stacking sequence
Recently Published Documents


TOTAL DOCUMENTS

896
(FIVE YEARS 223)

H-INDEX

46
(FIVE YEARS 7)

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 394
Author(s):  
Zeina Hamam ◽  
Nathalie Godin ◽  
Pascal Reynaud ◽  
Claudio Fusco ◽  
Nicolas Carrère ◽  
...  

Transverse cracking induced acoustic emission in carbon fiber/epoxy matrix composite laminates is studied both experimentally and numerically. The influence of the type of sensor, specimen thickness and ply stacking sequence is investigated. The frequency content corresponding to the same damage mechanism differs significantly depending on the sensor and the stacking sequence. However, the frequency centroid does not wholly depend on the ply thickness except for the inner ply crack and a sensor located close enough to the crack. Outer ply cracking exhibits signals with a low-frequency content, not depending much on the ply thickness, contrary to inner ply cracking, for which the frequency content is higher and more dependent on the ply thickness. Frequency peaks and frequency centroids obtained experimentally are well captured by numerical simulations of the transverse cracking induced acoustic emission for different ply thicknesses.


Author(s):  
Md. Jahangir Alam ◽  
Mohammad Washim Dewan ◽  
Sojib Kummer Paul ◽  
Khurshida Sharmin

Expensive and non-biodegradable synthetic fibres are commonly utilized as reinforcement in composites for better mechanical properties. The eco-friendly and low-cost properties of natural fibres are promising alternative reinforcement for composites. In this study epoxy-based glass and jute fibres reinforced hybrid composites are fabricated varying fibre stacking sequences, 1jute-1glass alternatively (j-g-j-) and 4glass-9jute-4glass (4g-9j-4g). Hybridization of jute and glass fibre results better tensile, flexural and water absorption properties than only jute fibre reinforced composites but inferior to only glass fibre reinforced composites. The 4g-9j-4g stacking sequence resulted in better mechanical and water absorption properties than j-g-j-- stacking sequence. The effect of chemical treatment and glass microfiber infusion are also investigated. Chemically treated jute fibre and 2 wt.% microfiber infused hybrid composite shows about 42% improvements in flexural strength as compared to untreated and without microfiber infused composites. However, fibre chemical treatment and microfiber do not have a positive impact on tensile strength.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7881
Author(s):  
Mehdi Safari ◽  
Ricardo Alves de Sousa ◽  
Fábio Fernandes ◽  
Mazaher Salamat-Talab ◽  
Arash Abdollahzadeh

Fiber metal laminates (FMLs) are a type of hybrid materials interlacing composites and metals. In the present work, FMLs with aluminum alloy 6061 as the skin and E-glass fiber-reinforced polypropylene (PP) as the core material are fabricated and formed by the creep age forming (CAF) process. The effects of time and temperature as the process parameters and thickness and stacking sequences of composites layers as the FML parameters are evaluated on the springback of glass-reinforced aluminum laminates (GLARE) FMLs. After the CAF process, the springback of creep age-formed FMLs is calculated. The results show that the FMLs can be successfully formed with the CAF process by considering appropriate time and temperature. In addition, the stacking sequence of composite layers can affect the springback behavior of FMLs significantly.


Author(s):  
Xunpeng Zhao ◽  
Shuangshuang Sun ◽  
Yang Wang ◽  
Xiugang Wang

Abstract The material properties of composite materials are affected by changes in temperature and moisture. This study used the glass/carbon fiber reinforced plastic hybrid composite (G/CFRPHC) laminate as the research object. The stiffness and strength of the composite lamina were expressed as a function of hydrothermal parameters. Based on classical lamination theory(CLT) and macro-mechanical analysis, using MATLAB programming, the tensile strength of G/CFRPHC laminates under a hydrothermal environment was studied. In addition, the influence of temperature, ply thickness, ply stacking sequence, and ply angle on the tensile strength of G/CFRPHC laminates under a hydrothermal environment was discussed. The results show that the tensile strength of G/CFRPHC laminates decreases with the increase of temperature and laying angle in the temperature range of 20℃~110℃ in the hydrothermal environment (moisture absorption rate C1=0.5%). Furthermore, for the G/CFRPHC laminates with laying modes of (02G/90mC)S, (04G/90mC)S, (06G/90mC)S, as m increases, their tensile strength gradually decreases. The tensile strength of G/CFRPHC laminates with the same ply angle but different ply stacking sequence is also not the same.


Author(s):  
Naveen R ◽  
◽  
Kumar M ◽  
Mathan A ◽  
Dhushyanath D ◽  
...  

In the recent times, usage of Carbon Fiber Reinforced Plastics (CFRP) is inevitable in almost all the engineering sectors especially in Aerospace industries. In spite of its wide range of applications, the usage is currently limited due to its higher cost while compare to the other forms of composite. To overcome this issue, recent researches have introduced low cost high strength composite materials. The present work attempts to investigate the mechanical properties of hybrid composite made out of Carbon and Basalt fiber. The hybrid composites are fabricated through compression moulding technique with different stacking sequence of ply laminates. The fabricated laminates are then subjected to tensile, flexural, hardness and impact tests as per ASTM standard to characterize the mechanical properties. From the experimental results it is evidenced that the strength of hybrid laminates were strongly dependents on the stacking sequence of fiber reinforcement. The fabricated laminates of carbon fiber as top layer reveal improved mechanical strength than that of basalt fiber as top layer. The microstructural investigations also been done on the fabricated composites and are reported.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3936
Author(s):  
Mohd Khairul Rabani Hashim ◽  
Mohd Shukry Abdul Majid ◽  
Mohd Ridzuan Mohd Jamir ◽  
Farizul Hafiz Kasim ◽  
Mohamed Thariq Hameed Sultan ◽  
...  

This study examined the fatigue behaviour of pineapple leaf fibre/carbon hybrid laminate composites under various stacking sequences. The vacuum infusion technique was used to fabricate the symmetric quasi-isotropic oriented laminates, in which the stacking was varied. The laminate was tested under static and fatigue tensile load according to ASTM D3039-76 and ASTM D3479-96, respectively. Maximum tensile strength and modulus of 119.34 MPa and 6.86 GPa, respectively, were recorded for the laminate with external PALF ply and internal carbon ply oriented at [± 45°2, 0°/90°2]s (PCCP_45090). The fatigue tests showed that PCCP_45090 and CPPC_09045 (with internal PALF ply and external carbon ply oriented at [0°/90°2, ± 45°2]s) exhibited a higher useful life, especially at the high-stress level of the ultimate tensile strength. The normalised stress against the number of cycles showed that the stacking sequences of different ply orientations affected the fatigue behaviour more than the stacking sequences of the material. The laminate stacking sequence significantly affected the hysteresis energy and stiffness evolution. The scanning electron microscopy images showed that the fatigue failure modes included fibre pull-out, fibre breakage, matrix cracking, debonding, and delamination. The study concluded that PCCP_45090 exhibited an outstanding fatigue performance.


Sign in / Sign up

Export Citation Format

Share Document