99mTc-pyridoxylidene glutamate, a gall bladder imaging agent: Chemistry of preparation and comparative animal studies with 131I-Rose bengal

1977 ◽  
Vol 4 (1) ◽  
pp. 21-28 ◽  
Author(s):  
E. Chiotellis ◽  
G. Subramanian ◽  
J.G. McAfee
1975 ◽  
Vol 14 (04) ◽  
pp. 330-338
Author(s):  
L. G. Colombetti ◽  
J. S. Arnold ◽  
W. E. Barnes

SummaryTc-99m pyridoxylidene glutamate has proven to be an excellent biliary scanning agent, far superior in many respect to the commonly used 1-131 rose bengal. The preparation of the compound as previously reported by Baker et al is too time consuming and requires the use of an autoclave which is not available in most nuclear medicine departments. In our facility, we have been preparing similar compounds using several aldehydes and monosodium glutamate to make labeled complexes having the same pharmacological characteristics. The mixture of monosodium glutamate, aldehyde, and Tc-99m pertechnetate is made slightly alkaline, purged with helium, and placed in a sealed vial. The vial, which is protected by a wire basket, is then heated in a laboratory oven at 130° C for a period of 15 to 20 minutes. During this time, the technetium is reduced to a lower valence state and bound to the complex formed. Chromatographic data show that these compounds are chemically similar to that previously reported. The compounds prepared concentrate in the gall bladder of the rabbit in less than 10 minutes. Kinetic studies have been performed on dogs with a scintillation camera and small digital computer to measure rates of blood clearance, liver and gall bladder uptake, and excretion into the intestine. The aldehyde — glutamate complex promises to be a useful scanning agent for the diagnosis of biliary and hepatocellular diseases.


Gut ◽  
1998 ◽  
Vol 42 (6) ◽  
pp. 830-835 ◽  
Author(s):  
Y C Luiking ◽  
T L Peeters ◽  
M F J Stolk ◽  
V B Nieuwenhuijs ◽  
P Portincasa ◽  
...  

Background—Animal studies have shown that motilin affects gall bladder motility. In humans, no effect has been shown, but erythromycin, a motilin receptor agonist, induces gall bladder emptying.Aims—To explore the effect of increasing doses of exogenous motilin on gall bladder volume and antral contractility in the fasted state in humans.Methods—After an overnight fast, eight healthy men received increasing intravenous doses of Leu13-motilin (KW-5139) or 0.9% NaCl in a double blind, randomised fashion. Gall bladder volume and antral contraction frequency were determined by ultrasonography.Results—Infusion of motilin increased plasma motilin levels. Motilin induced a reduction in gall bladder volume of 8.0 (5.0)%, 17.1 (5.0)%, 18.5 (4.7)%, and 16.1 (4.9)% of baseline volume at the end of infusion of 2, 4, ,8 and 16 pmol/kg/min respectively, compared with mean stable gall bladder volumes during placebo infusion (p<0.05). Antral contraction frequency increased during motilin infusion, but not during placebo infusion (p<0.05).Conclusions—Exogenous motilin reducted fasting gall bladder volume and increased antral contractions. After reaching maximal reduction, the gall bladder volume did not decrease further during continuous motilin infusion at higher doses and stayed at the same reduced volume. The degree of gall bladder volume reduction during motilin infusion mimicked gall bladder emptying preceding antral phase III activity of the migrating motor complex in humans. This study indicates that motilin may play a physiological role in the regulation of gall bladder emptying in the fasted state.


2011 ◽  
Vol 69 (9) ◽  
pp. 1169-1175 ◽  
Author(s):  
Yan Wang ◽  
Shineng Luo ◽  
Jianguo Lin ◽  
Ling Qiu ◽  
Wen Cheng ◽  
...  

2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


1959 ◽  
Vol 36 (2) ◽  
pp. 251-255 ◽  
Author(s):  
Richard S. Wilbur ◽  
Robert J. Bolt

1957 ◽  
Vol 32 (4) ◽  
pp. 666-674 ◽  
Author(s):  
Raymond A. Gagliardi ◽  
Philip D. Gelbach
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document