Chemical and physiological changes of phytoplankton during the spring bloom, dominated by phaeocystis pouchetii (Haptophyceae): observations in Dutch coastal waters of the North Sea

1986 ◽  
Vol 20 (1) ◽  
pp. 49-60 ◽  
Author(s):  
M.J.W. Veldhuis ◽  
W. Admiraal ◽  
F. Colijn
1963 ◽  
Vol 20 (3) ◽  
pp. 789-826 ◽  
Author(s):  
B. McK. Bary

Monthly temperature-salinity diagrams for 1957 have demonstrated that three surface oceanic "water bodies" were consistently present in the eastern North Atlantic; two are regarded as modified North Atlantic Central water which give rise to the third by mixing. As well in the oceanic areas, large and small, high or low salinity patches of water were common. Effects of seasonal climatic fluctuations differed in the several oceanic water bodies. In coastal waters, differences in properties and in seasonal and annual cycles of the properties distinguish the waters from the North Sea, English Channel and the western entrance to the Channel.The geographic distributions of the oceanic waters are consistent with "northern" and "southern" water bodies mixing to form a "transitional" water. Within this distribution there are short-term changes in boundaries and long-term (seasonal) changes in size of the water bodies.Water in the western approaches to the English Channel appeared to be influenced chiefly by the mixed, oceanic transitional water; oceanic influences in the North Sea appear to have been from northern and transitional waters.


2004 ◽  
Vol 30 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Hans van der Woerd ◽  
Reinold Pasterkamp

1960 ◽  
Vol 67 (4) ◽  
pp. 351-362 ◽  
Author(s):  
A. D. McIntyre

SynopsisFrom a faunistic survey in Scottish waters, concentrated mainly in the sea lochs of the north-west coast and in the deep water in the North Sea off the east coast, thirty-two species of polychætes are listed which have not previously been recorded from these areas. Seven of the species are new records for British coastal waters or for the North Sea.


2004 ◽  
Vol 1 (2) ◽  
pp. 147-157 ◽  
Author(s):  
N. Gypens ◽  
C. Lancelot ◽  
A. V. Borges

Abstract. A description of the carbonate system has been incorporated in the MIRO biogeochemical model to investigate the contribution of diatom and Phaeocystis blooms to the seasonal dynamics of air-sea CO2 exchanges in the Eastern Channel and Southern Bight of the North Sea, with focus on the eutrophied Belgian coastal waters. For this application, the model was implemented in a simplified three-box representation of the hydrodynamics with the open ocean boundary box ‘Western English Channel’ (WCH) and the ‘French Coastal Zone’ (FCZ) and ‘Belgian Coastal Zone’ (BCZ) boxes receiving carbon and nutrients from the rivers Seine and Scheldt, respectively. Results were obtained by running the model for the 1996–1999 period. The simulated partial pressures of CO2 (pCO2) were successfully compared with data recorded over the same period in the central BCZ at station 330 (51°26.05′ N; 002°48.50′ E). Budget calculations based on model simulations of carbon flow rates indicated for BCZ a low annual sink of atmospheric CO2 (−0.17 mol C m-2 y-1). On the opposite, surface water pCO2 in WCH was estimated to be at annual equilibrium with respect to atmospheric CO2. The relative contribution of biological, chemical and physical processes to the modelled seasonal variability of pCO2 in BCZ was further explored by running model scenarios with separate closures of biological activities and/or river inputs of carbon. The suppression of biological processes reversed direction of the CO2 flux in BCZ that became, on an annual scale, a significant source for atmospheric CO2 (+0.53 mol C m-2 y-1). Overall biological activity had a stronger influence on the modelled seasonal cycle of pCO2 than temperature. Especially Phaeocystis colonies which growth in spring were associated with an important sink of atmospheric CO2 that counteracted the temperature-driven increase of pCO2 at this period of the year. However, river inputs of organic and inorganic carbon were shown to increase the surface water pCO2 and hence the emission of CO2 to the atmosphere. Same calculations conducted in WCH, showed that temperature was the main factor controlling the seasonal pCO2 cycle in these open ocean waters. The effect of interannual variations of fresh water discharge (and related nutrient and carbon inputs), temperature and wind speed was further explored by running scenarios with forcing typical of two contrasted years (1996 and 1999). Based on these simulations, the model predicts significant variations in the intensity and direction of the annual air-sea CO2 flux.


Sign in / Sign up

Export Citation Format

Share Document