In vitro replication of human mitochondrial DNA: Accurate initiation at the origin of light-strand synthesis

Cell ◽  
1985 ◽  
Vol 42 (3) ◽  
pp. 951-958 ◽  
Author(s):  
Tai Wai Wong ◽  
David A. Clayton
2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Oliver M. Russell ◽  
Isabelle Fruh ◽  
Pavandeep K. Rai ◽  
David Marcellin ◽  
Thierry Doll ◽  
...  

1991 ◽  
Vol 11 (3) ◽  
pp. 1631-1637
Author(s):  
C T Moraes ◽  
F Andreetta ◽  
E Bonilla ◽  
S Shanske ◽  
S DiMauro ◽  
...  

We identified two patients with progressive external ophthalmoplegia, a mitochondrial disease, who harbored a population of partially deleted mitochondrial DNA (mtDNA) with unusual properties. These molecules were deleted from mtDNA positions 548 to 4,442 and encompassed not only rRNA sequences but the heavy-strand promoter region as well. A 13-bp direct repeat was found flanking the breakpoint precisely, with the repeat at positions 535 to 547 located within the binding site for mitochondrial transcription factor 1 (mtTF1). This is the second mtDNA deletion involving a 13-bp direct repeat reported but is at least 10 times less frequent in the patient population than the former one. In situ hybridization studies showed that transcripts under the control of the light-strand promoter were abundant in muscle fibers with abnormal proliferation of mitochondria, while transcripts directed by the heavy-strand promoter, whether of genes residing inside or outside the deleted region, were not. The efficient transcription from the light-strand promoter implies that the major heavy-and light-strand promoters, although physically close, are functionally independent, confirming previous in vitro studies.


1986 ◽  
Vol 6 (5) ◽  
pp. 1446-1453 ◽  
Author(s):  
D D Chang ◽  
D A Clayton

The major transcriptional control sequences of vertebrate mitochondrial DNA lie within the displacement loop region. Transcription events initiating in the displacement loop sequence of the mouse genome were identified by 5' end mapping of primary transcripts by S1 nuclease protection and primer extension techniques. Light-strand transcription initiates at a single site, 165 nucleotides upstream of the major heavy-strand origin of replication. Transcription of the heavy strand occurs at two distinct sites, 5 and 13 nucleotides upstream of the gene for phenylalanyl-tRNA, the first heavy-strand-encoded gene. This spatial relationship of the two transcriptional start sites with each other and with the origin of heavy-strand replication and the gene for tRNAPhe is quite similar to that for human mitochondrial DNA. The predominant form of primary heavy-strand transcript in mouse is a short, ca. 75-nucleotide, RNA containing the sequences of tRNAPhe and a few additional nucleotides at the 5' end of tRNAPhe, suggesting that the processing of tRNA involves independent cleavages at the 5' and 3' ends of tRNA sequences.


1982 ◽  
Vol 79 (23) ◽  
pp. 7195-7199 ◽  
Author(s):  
J. Montoya ◽  
T. Christianson ◽  
D. Levens ◽  
M. Rabinowitz ◽  
G. Attardi

Sign in / Sign up

Export Citation Format

Share Document