mtdna deletion
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 24)

H-INDEX

16
(FIVE YEARS 2)

Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1918
Author(s):  
Lubica Dudakova ◽  
Pavlina Skalicka ◽  
Alice E. Davidson ◽  
Amanda N. Sadan ◽  
Monika Chylova ◽  
...  

The aim of this study was to describe the ocular phenotype in a case with Kearns-Sayre syndrome (KSS) spectrum and to determine if corneal endothelial cell dysfunction could be attributed to other known distinct genetic causes. Herein, genomic DNA was extracted from blood and exome sequencing was performed. Non-coding gene regions implicated in corneal endothelial dystrophies were screened by Sanger sequencing. In addition, a repeat expansion situated within an intron of TCF4 (termed CTG18.1) was genotyped using the short tandem repeat assay. The diagnosis of KSS spectrum was based on the presence of ptosis, chronic progressive external ophthalmoplegia, pigmentary retinopathy, hearing loss, and muscle weakness, which were further supported by the detection of ~6.5 kb mtDNA deletion. At the age of 33 years, the proband’s best corrected visual acuity was reduced to 0.04 in the right eye and 0.2 in the left eye. Rare ocular findings included marked corneal oedema with central corneal thickness of 824 and 844 µm in the right and left eye, respectively. No pathogenic variants in the genes, which are associated with corneal endothelial dystrophies, were identified. Furthermore, the CTG18.1 genotype was 12/33, which exceeds a previously determined critical threshold for toxic RNA foci appearance in corneal endothelial cells.


2021 ◽  
Vol 22 (22) ◽  
pp. 12223
Author(s):  
Giulia di Punzio ◽  
Micol Gilberti ◽  
Enrico Baruffini ◽  
Tiziana Lodi ◽  
Claudia Donnini ◽  
...  

Mitochondrial DNA depletion syndromes (MDS) are clinically heterogenous and often severe diseases, characterized by a reduction of the number of copies of mitochondrial DNA (mtDNA) in affected tissues. In the context of MDS, yeast has proved to be both an excellent model for the study of the mechanisms underlying mitochondrial pathologies and for the discovery of new therapies via high-throughput assays. Among the several genes involved in MDS, it has been shown that recessive mutations in MPV17 cause a hepatocerebral form of MDS and Navajo neurohepatopathy. MPV17 encodes a non selective channel in the inner mitochondrial membrane, but its physiological role and the nature of its cargo remains elusive. In this study we identify ten drugs active against MPV17 disorder, modelled in yeast using the homologous gene SYM1. All ten of the identified molecules cause a concomitant increase of both the mitochondrial deoxyribonucleoside triphosphate (mtdNTP) pool and mtDNA stability, which suggests that the reduced availability of DNA synthesis precursors is the cause for the mtDNA deletion and depletion associated with Sym1 deficiency. We finally evaluated the effect of these molecules on mtDNA stability in two other MDS yeast models, extending the potential use of these drugs to a wider range of MDS patients.


2021 ◽  
Author(s):  
Sagen E Flowers ◽  
Rushali Kothari ◽  
Yamila N Torres Cleuren ◽  
Melissa R Alcorn ◽  
Chee Kiang Ewe ◽  
...  

The heteroplasmic state of eukaryotic cells allows for cryptic accumulation of defective mitochondrial genomes (mtDNA). Purifying selection mechanisms operate to remove such dysfunctional mtDNAs. We found that pro-apoptotic regulators, including the CED-3 and CSP-1 caspases, the BH3-only protein CED-13, and PCD corpse engulfment factors, are required in C. elegans to attenuate germline abundance of a 3.1 kb mtDNA deletion mutation, uaDf5, which is normally stably maintained in heteroplasmy with wildtype mtDNA. In contrast, removal of CED-4/Apaf1 or a mutation in the CED-4-interacting prodomain of CED-3, do not increase accumulation of the defective mtDNA, suggesting induction of a non-canonical germline PCD mechanism or non-apoptotic action of the CED-13/caspase axis. We also found that the abundance of germline mtDNAuaDf5 reproducibly increases with age of the mothers. This effect is transmitted to the offspring of older mothers, with only partial intergenerational removal of the defective mtDNA. In mutants with elevated mtDNAuaDf5 levels, this removal is enhanced in older mothers, suggesting an age-dependent mechanism of mtDNA quality control. Indeed, we found that both steady-state and age-related accumulation rates of uaDf5 are markedly decreased in long-lived, and increased in short-lived, mutants. These findings reveal that regulators of both PCD and aging are required for germline mtDNA quality control and its intergenerational transmission.


Children ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 887
Author(s):  
Ting Li ◽  
Zhihong Lu ◽  
Jingjing Wang ◽  
Junyi Chen ◽  
Haidong Fu ◽  
...  

Fanconi syndrome is one of the primary renal manifestations of mitochondrial cytopathies caused by mitochondrial DNA (mtDNA) mutation. The common 4977-bp mtDNA deletion has been reported to be associated with aging and diseases involving multiple extrarenal organs. Cases of Fanconi syndrome caused by the 4977-bp deletion were rarely reported previously. Here, we report a 6-year-old girl with growth retardation in the course of Fanconi syndrome. She had mild ptosis and pigmented retinopathy. Abnormal biochemical findings included low-molecular-weight proteinuria, normoglycemic glycosuria, increased urine phosphorus excretion, metabolic acidosis, and hypophosphatemia. Growth records showed that her body weight and height were normal in the first year and failed to thrive after the age of three. Using a highly sensitive mtDNA analysis methodology, she was identified to possess the common 4977-bp mtDNA deletion. The mutation rate was 84.7% in the urine exfoliated cells, 78.67% in the oral mucosal cells, and 23.99% in the blood sample. After three months of oral coenzyme Q10 and levocarnitine treatment in combination with standard electrolyte supplement, her condition was improved. This is a report of growth retardation as the initial major clinical presentation of Fanconi syndrome caused by the deletion of the 4977-bp fragment. Renal tubular abnormality without any other extrarenal dysfunction may be an initial clinical sign of mitochondrial disorders. Moreover, considering the heterogeneity of the phenotypes associated with mtDNA mutations, the risk of developing Kearns–Sayre syndrome (KSS) with age in this patient should be noted because she had ptosis, retinal involvement, and changes in the brain and skeletal muscle.


Author(s):  
Mazhar Salim Al Zoubi ◽  
Ali M. Al-Talafha ◽  
Emad Al Sharu ◽  
Bahaa Al-Trad ◽  
Ayman Alzu'bi ◽  
...  

Background: Alterations in sperm mitochondrial DNA (mtDNA) affect the functions of some OXPHOS proteins which will affect sperm motility and may be associated with asthenozoospermia. The purpose of this study was to investigate the correlation between 7599-bp and 7345-bp sperm mtDNA deletions and asthenozoospermia in Jordan. Methods: Semen specimens from 200 men including 121 infertile and 79 healthy individuals were collected at the Royal Jordanian Medical Services In-vitro fertilization (IVF) units. The mtDNA was extracted followed by mtDNA amplification. Polymerase chain reaction (PCR) was conducted for the target sequences, then DNA sequencing was performed for the PCR products. Chi-square, Fisher's and Spearman's tests were used to calculate the correlation.  Results: The results showed a significant correlation between the presence of 7599-bp mtDNA deletion and infertility where the frequency of the 7599-bp deletion was 63.6% in the infertile group compared to the fertile 34.2% (p<0.001, (OR=3.37, 95% CI=1.860 to 6.108)). Additionally, the sperm motility showed a significant association with the frequency of the 7599-bp deletion (p=0.001, r=-0.887). The 7345-bp mtDNA deletion showed no assoctiation with the infertility (p=0.65, (OR=0.837, 95% CI= 0.464-1.51)) or asthenozoospermia (p=0.98, r=0.008). Conclusion: We demonstrated a significant correlation between asthenozoospermia and the 7599-bp mtDNA deletion but not the 7345-bp mtDNA deletion in the infertile men in Jordan. Screening for deletions in sperm mtDNA can be used as a pre-diagnostic molecular marker for male infertility.


2021 ◽  
Author(s):  
Sumedha Dahal ◽  
Humaira Siddiqua ◽  
Shivangi Sharma ◽  
Ravi K Babu ◽  
Meghana Manjunath ◽  
...  

Having its own genome makes mitochondria a unique and semiautonomous organelle within cells. Mammalian mitochondrial DNA (mtDNA) is double-stranded closed circular molecule of about 16 kb coding 37 genes. Mutations, including deletions in the mitochondrial genome can culminate in different human diseases. Mapping of the deletion junctions suggests that the breakpoints are generally seen at hotspots. '9-bp deletion' (8271-8281), seen in the intergenic region of cytochrome c oxidase II/tRNALys, is the most common mitochondrial deletion. While it is associated with several diseases like myopathy, dystonia, and hepatocellular carcinoma, it has also been used as an evolutionary marker. However, the mechanism responsible for its fragility is unclear. In the current study, we show that Endonuclease G, a mitochondrial nuclease responsible for nonspecific cleavage of nuclear DNA during apoptosis, can induce breaks at sequences associated with '9-bp deletion', when it is present on a plasmid or in the mitochondrial genome. Through a series of in vitro and intracellular studies, we show that Endonuclease G binds to G-quadruplex structures formed at the hotspot and induces DNA breaks. Besides, we reconstitute the whole process of '9-bp deletion' using purified Endonuclease G to induce breaks in mtDNA, followed by mitochondrial extract-mediated DSB repair and establish that microhomology-mediated end joining is responsible for the generation of mtDNA deletion. Finally, we show that the whole process is regulated by different stress conditions, which may modulate release of Endonuclease G to the mitochondrial matrix. Therefore, we uncover a new role for Endonuclease G in generating deletions, which is dependent on the formation of G4 DNA within the mitochondrial genome. Thus, in this study we identify a novel property of Endonuclease G, besides its role in apoptosis, and the recently described 'elimination of paternal mitochondria during fertilization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ying Liu ◽  
Yuan Sun ◽  
Osefame Ewaleifoh ◽  
Josh Wei ◽  
Ruifa Mi ◽  
...  

AbstractEthoxyquin (EQ), a quinolone-based antioxidant, has demonstrated neuroprotective properties against several neurotoxic drugs in a phenotypic screening and is shown to protect axons in animal models of chemotherapy-induced peripheral neuropathy. We assessed the effects of EQ on peripheral nerve function in the db/db mouse model of type II diabetes. After a 7 week treatment period, 12-week-old db/db-vehicle, db/+ -vehicle and db/db-EQ treated animals were evaluated by nerve conduction, paw withdrawal against a hotplate, and fiber density in hindlimb footpads. We found that the EQ group had shorter paw withdrawal latency compared to vehicle db/db group. The EQ group scored higher in nerve conduction studies, compared to vehicle-treated db/db group. Morphology studies yielded similar results. To investigate the potential role of mitochondrial DNA (mtDNA) deletions in the observed effects of EQ, we measured total mtDNA deletion burden in the distal sciatic nerve. We observed an increase in total mtDNA deletion burden in vehicle-treated db/db mice compared to db/+ mice that was partially prevented in db/db-EQ treated animals. These results suggest that EQ treatment may exert a neuroprotective effect in diabetic neuropathy. The prevention of diabetes-induced mtDNA deletions may be a potential mechanism of the neuroprotective effects of EQ in diabetic neuropathy.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 607
Author(s):  
Rocio Rius ◽  
Alison G. Compton ◽  
Naomi L. Baker ◽  
AnneMarie E. Welch ◽  
David Coman ◽  
...  

Mitochondrial diseases can be caused by pathogenic variants in nuclear or mitochondrial DNA-encoded genes that often lead to multisystemic symptoms and can have any mode of inheritance. Using a single test, Genome Sequencing (GS) can effectively identify variants in both genomes, but it has not yet been universally used as a first-line approach to diagnosing mitochondrial diseases due to related costs and challenges in data analysis. In this article, we report three patients with mitochondrial disease molecularly diagnosed through GS performed on DNA extracted from blood to demonstrate different diagnostic advantages of this technology, including the detection of a low-level heteroplasmic pathogenic variant, an intragenic nuclear DNA deletion, and a large mtDNA deletion. Current technical improvements and cost reductions are likely to lead to an expanded routine diagnostic usage of GS and of the complementary “Omic” technologies in mitochondrial diseases.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 284
Author(s):  
Yeonmi Lee ◽  
Taeho Kim ◽  
Miju Lee ◽  
Seongjun So ◽  
Mustafa Zafer Karagozlu ◽  
...  

Defects in the mitochondrial genome (mitochondrial DNA (mtDNA)) are associated with both congenital and acquired disorders in humans. Nuclear-encoded DNA polymerase subunit gamma (POLG) plays an important role in mtDNA replication, and proofreading and mutations in POLG have been linked with increased mtDNA deletions. SSBP1 is also a crucial gene for mtDNA replication. Here, we describe a patient diagnosed with Pearson syndrome with large mtDNA deletions that were not detected in the somatic cells of the mother. Exome sequencing was used to evaluate the nuclear factors associated with the patient and his family, which revealed a paternal POLG mutation (c.868C > T) and a maternal SSBP1 mutation (c.320G > A). The patient showed lower POLG and SSBP1 expression than his healthy brothers and the general population of a similar age. Notably, c.868C in the wild-type allele was highly methylated in the patient compared to the same site in both his healthy brothers. These results suggest that the co- deficient expression of POLG and SSBP1 genes could contribute to the development of mtDNA deletion.


Sign in / Sign up

Export Citation Format

Share Document