Expression cloning of a diphtheria toxin receptor: Identity with a heparin-binding EGF-like growth factor precursor

Cell ◽  
1992 ◽  
Vol 69 (6) ◽  
pp. 1051-1061 ◽  
Author(s):  
Joseph G. Naglich ◽  
James E. Metherall ◽  
David W. Russell ◽  
Leon Eidels
1995 ◽  
Vol 129 (6) ◽  
pp. 1691-1705 ◽  
Author(s):  
K Nakamura ◽  
R Iwamoto ◽  
E Mekada

Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the EGF family of growth factors, which interact with EGF receptor to exert mitogenic activity. The membrane-anchored form of HB-EGF, proHB-EGF, is biologically active, providing mitogenic stimulation to neighboring cells in a juxtacrine mode. ProHB-EGF forms a complex with diphtheria toxin receptor-associated protein (DRAP27)/CD9, a tetra membrane-spanning protein that upregulates the juxtacrine mitogenic activity of proHB-EGF. We explored whether other proteins associate with DRAP27/CD9 and proHB-EGF. Immunoprecipitation with anti-DRAP27/CD9 resulted in preferential coprecipitation of integrin alpha 3 beta 1 from Vero cell, A431 cell and MG63 cell lysates. Anti-integrin alpha 3 or anti-integrin beta 1 coprecipitated DRAP27/CD9 from the same cell lysates. Chemical cross-linking confirmed the physical association of DRAP27/CD9 and integrin alpha 3 beta 1. Using Vero-H cells, which overexpress HB-EGF, we also demonstrated the association of proHB-EGF with DRAP27/CD9 and integrin alpha 3 beta 1. Moreover, colocalization of proHB-EGF, DRAP27/CD9, and integrin alpha 3 beta 1 at cell-cell contact sites was observed by double-immunofluorescence staining. At cell-cell contact sites, DRAP27/CD9 was highly coincident with alpha-catenin and vinculin, suggesting that DRAP27/CD9, proHB-EGF, and integrin alpha 3 beta 1 are colocalized with adherence junction-locating proteins. These results indicate that direct interaction of growth factors and cell adhesion molecules may control cell proliferation during the cell-cell adhesion process.


1995 ◽  
Vol 310 (1) ◽  
pp. 285-289 ◽  
Author(s):  
M Lanzrein ◽  
O Garred ◽  
S Olsnes ◽  
K Sandvig

Preincubation of Vero cells with 1 microM phorbol 12-myristate 13-acetate (PMA) decreased the specific binding of diphtheria toxin by about 50%, whereas the toxic effect, endocytic uptake and membrane translocation were completely blocked. Toxin bound to PMA-treated cells was released upon incubation with heparinase. The effect of PMA was abrogated in the presence of EDTA or N-(DL-[2-(hydroxyaminocarbonyl)methyl]-4-methyl-pentanoyl)-L-3-(2′ - naphthyl)-alanyl-L-alanine 2-aminoethyl-amide (TAPI), a specific inhibitor of matrix metalloproteases. The results indicate that PMA induces proteolytic cleavage of the diphtheria-toxin receptor [heparin-binding EGF-like growth factor (HB-EGF)-precursor] outside the membrane anchor, and that about 50% of the growth-factor ecto-domain remains associated with the cells, due to binding to surface proteoglycans containing heparan sulphates. Although the cleaved cell-associated HB-EGF binds diphtheria toxin, it does not serve as a functional receptor, since neither toxin internalization nor translocation occurs. Thus the intact HB-EGF precursor is of crucial importance for its function as the diphtheria-toxin receptor.


Sign in / Sign up

Export Citation Format

Share Document