receptor associated protein
Recently Published Documents


TOTAL DOCUMENTS

498
(FIVE YEARS 51)

H-INDEX

56
(FIVE YEARS 5)

2022 ◽  
Vol 23 (2) ◽  
pp. 711
Author(s):  
Hiromi Sakaguchi ◽  
Hiroyuki Tsuchiya ◽  
Yutaka Kitagawa ◽  
Tomohiko Tanino ◽  
Kenji Yoshida ◽  
...  

A long noncoding RNA (lncRNA), nuclear enriched abundant transcript 1 (NEAT1) variant 1 (NEAT1v1), is involved in the maintenance of cancer stem cells (CSCs) in hepatocellular carcinoma (HCC). CSCs are suggested to play important roles in therapeutic resistance. Therefore, we investigated whether NEAT1v1 is involved in the sensitivity to radiation therapy in HCC. Gene knockdown was performed using short hairpin RNAs, and NEAT1v1-overexpressing HCC cell lines were generated by stable transfection with a NEAT1v1-expressing plasmid DNA. Cells were irradiated using an X-ray generator. We found that NEAT1 knockdown enhanced the radiosensitivity of HCC cell lines and concomitantly inhibited autophagy. NEAT1v1 overexpression enhanced autophagy in the irradiated cells and conferred radioresistance. Gamma-aminobutyric acid receptor-associated protein (GABARAP) expression was downregulated by NEAT1 knockdown, whereas it was upregulated in NEAT1v1-overexpressing cells. Moreover, GABARAP was required for NEAT1v1-induced autophagy and radioresistance as its knockdown significantly inhibited autophagy and sensitized the cells to radiation. Since GABARAP is a crucial protein for the autophagosome-lysosome fusion, our results suggest that NEAT1v1 confers radioresistance to HCC by promoting autophagy through GABARAP.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1829
Author(s):  
Inês Ramos Rego ◽  
Beatriz Santos Cruz ◽  
António Francisco Ambrósio ◽  
Celso Henrique Alves

Tumor necrosis factor receptor-associated protein 1 (TRAP1), also known as heat shock protein 75 (HSP75), is a member of the heat shock protein 90 (HSP90) chaperone family that resides mainly in the mitochondria. As a mitochondrial molecular chaperone, TRAP1 supports protein folding and contributes to the maintenance of mitochondrial integrity even under cellular stress. TRAP1 is a cellular regulator of mitochondrial bioenergetics, redox homeostasis, oxidative stress-induced cell death, apoptosis, and unfolded protein response (UPR) in the endoplasmic reticulum (ER). TRAP1 has attracted increasing interest as a therapeutical target, with a special focus on the design of TRAP1 specific inhibitors. Although TRAP1 was extensively studied in the oncology field, its role in central nervous system cells, under physiological and pathological conditions, remains largely unknown. In this review, we will start by summarizing the biology of TRAP1, including its structure and related pathways. Thereafter, we will continue by debating the role of TRAP1 in the maintenance of redox homeostasis and protection against oxidative stress and apoptosis. The role of TRAP1 in neurodegenerative disorders will also be discussed. Finally, we will review the potential of TRAP1 inhibitors as neuroprotective drugs.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jingrong Huang ◽  
Li Zhao ◽  
Chengxian Gong ◽  
Yi Wang ◽  
Yinzong Qu ◽  
...  

The aim of this study was to investigate the anticancer effects of shikonin on esophageal cancer (EC) cells and explore the underlying molecular mechanism by identifying dysregulation in shikonin-induced tumor necrosis factor receptor-associated protein 1 (TRAP1) expression. The 3-(4, 5-dimethylthiazol-2-Yl)-2, 5-diphenyltetrazolium bromide assay and EDU assay were performed for cell viability determination. The reactive oxygen species level and mitochondrial membrane potential were evaluated using flow cytometry. The protein expression was detected using Western blot. In addition, cell migration and invasion were estimated. These results demonstrated that shikonin inhibited EC cell growth in a concentration-dependent manner and induced apoptosis through activation of the intracellular apoptotic signaling pathway. Moreover, TRAP1 downregulation promoted shikonin-induced reactive oxygen species release, whereas TRAP1 upregulation blocked it. Meanwhile, shikonin significantly promoted mitochondrial depolarization, accompanied by a large release of cytochrome C. Conversely, shikonin significantly decreased adenosine 5′-triphosphate release, demonstrating a significant intervention in the process of the glucose metabolism. In addition, not only shikonin but also short hairpin RNA (shRNA)-TRAP1 inhibited EC cell migration and invasion. shRNA-TRAP1 enhanced the inhibitory effect of shikonin on matrix metalloproteinase (MMP)2 and MMP9 expression. More interestingly, we demonstrated that shRNA-TRAP1 played a synergistic role in shikonin-mediated regulation of protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling. Collectively, shikonin promoted apoptosis and attenuated migration and invasion of EC cells by inhibiting TRAP1 expression and AKT/mTOR signaling, indicating that shikonin may be a new drug for treating EC.


2021 ◽  
Vol 22 (21) ◽  
pp. 11586
Author(s):  
Alma Kokott-Vuong ◽  
Jennifer Jung ◽  
Aaron T. Fehr ◽  
Nele Kirschfink ◽  
Rozina Noristani ◽  
...  

Hypoxia is known to impair mitochondrial and endoplasmic reticulum (ER) homeostasis. Post-hypoxic perturbations of the ER proteostasis result in the accumulation of misfolded/unfolded proteins leading to the activation of the Unfolded Protein Response (UPR). Mitochondrial chaperone TNF receptor-associated protein 1 (TRAP1) is reported to preserve mitochondrial membrane potential and to impede reactive oxygen species (ROS) production thereby protecting cells from ER stress as well as oxidative stress. The first-line antidiabetic drug Metformin has been attributed a neuroprotective role after hypoxia. Interestingly, Metformin has been reported to rescue mitochondrial deficits in fibroblasts derived from a patient carrying a homozygous TRAP1 loss-of-function mutation. We sought to investigate a putative link between Metformin, TRAP1, and the UPR after hypoxia. We assessed post-hypoxic/reperfusion longevity, mortality, negative geotaxis, ROS production, metabolic activity, gene expression of antioxidant proteins, and activation of the UPR in Trap1-deficient flies. Following hypoxia, Trap1 deficiency caused higher mortality and greater impairments in negative geotaxis compared to controls. Similarly, post-hypoxic production of ROS and UPR activation was significantly higher in Trap1-deficient compared to control flies. Metformin counteracted the deleterious effects of hypoxia in Trap1-deficient flies but had no protective effect in wild-type flies. We provide evidence that TRAP1 is crucially involved in the post-hypoxic regulation of mitochondrial/ER stress and the activation of the UPR. Metformin appears to rescue Trap1-deficiency after hypoxia mitigating ROS production and downregulating the pro-apoptotic PERK (protein kinase R-like ER kinase) arm of the UPR.


Author(s):  
Benedict W. J. Irwin ◽  
Clara C. Wanjura ◽  
Daniel Molnar ◽  
Michael J. Rutter ◽  
Michael C. Payne ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhenguo Wang ◽  
Xiaojing Gao ◽  
Qingrun Li ◽  
Hongwen Zhu ◽  
Xiangjie Zhao ◽  
...  

Increasing energy expenditure by promoting “browning” in adipose tissues is a promising strategy to prevent obesity and associated diabetes. To uncover potential targets of cold exposure, which induces energy expenditure, we performed phosphoproteomics profiling in brown adipose tissue of mice housed in mild cold environment at 16°C. We identified CDC2-like kinase 1 (CLK1) as one of the kinases that were significantly downregulated by mild cold exposure. In addition, genetic knockout of CLK1 or chemical inhibition in mice ameliorated diet-induced obesity and insulin resistance at 22°C. Through proteomics, we uncovered thyroid hormone receptor-associated protein 3 (THRAP3) as an interacting partner of CLK1, further confirmed by co-immunoprecipitation assays. We further demonstrated that CLK1 phosphorylates THRAP3 at Ser243, which is required for its regulatory interaction with phosphorylated peroxisome proliferator-activated receptor gamma (PPARγ), resulting in impaired adipose tissue browning and insulin sensitivity. These data suggest that CLK1 plays a critical role in controlling energy expenditure through the CLK1-THRAP3-PPARγ axis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Degang Cheng ◽  
Jia Zheng ◽  
Fang Hu ◽  
Wei Lv ◽  
Chengzhi Lu

Myocardial infarction is characterized by cardiomyocyte death, and can be exacerbated by mitochondrial damage and endoplasmic reticulum injury. In the present study, we investigated whether communication between mitochondria and the endoplasmic reticulum contributes to cardiomyocyte death after myocardial infarction. Our data demonstrated that hypoxia treatment (mimicking myocardial infarction) promoted cardiomyocyte death by inducing the c-Jun N-terminal kinase (JNK) pathway. The activation of JNK under hypoxic conditions was dependent on overproduction of mitochondrial reactive oxygen species (mtROS) in cardiomyocytes, and mitochondrial division was identified as the upstream inducer of mtROS overproduction. Silencing mitochondrial division activators, such as B cell receptor associated protein 31 (BAP31) and mitochondrial fission 1 (Fis1), repressed mitochondrial division, thereby inhibiting mtROS overproduction and preventing JNK-induced cardiomyocyte death under hypoxic conditions. These data revealed that a novel death-inducing mechanism involving the BAP31/Fis1/mtROS/JNK axis promotes hypoxia-induced cardiomyocyte damage. Considering that BAP31 is localized within the endoplasmic reticulum and Fis1 is localized in mitochondria, abnormal mitochondria-endoplasmic reticulum communication may be a useful therapeutic target after myocardial infarction.


2021 ◽  
Author(s):  
Jacob Dockterman ◽  
Brian E. Fee ◽  
Gregory A. Taylor ◽  
Jörn Coers

Gamma-interferon (IFNγ)-induced immunity-related GTPases (IRGs) confer cell-autonomous immunity to the intracellular protozoan pathogen Toxoplasma gondii . Effector IRGs are loaded onto the Toxoplasma -containing parasitophorous vacuole (PV), where they recruit ubiquitin ligases, ubiquitin-binding proteins, and IFNγ-inducible guanylate-binding proteins (Gbps), prompting PV lysis and parasite destruction. Host cells lacking the regulatory IRGs Irgm1 and Irgm3 fail to load effector IRGs, ubiquitin, and Gbps onto the PV and are consequently defective for cell-autonomous immunity to Toxoplasma . However, the role of the third regulatory IRG, Irgm2, in cell-autonomous immunity to Toxoplasma has remained unexplored. Here, we report that Irgm2 unexpectedly plays a limited role in the targeting of effector IRGs, ubiquitin, and Gbps to the Toxoplasma PV. Instead, Irgm2 is instrumental in the decoration of PVs with γ-aminobutyric acid receptor-associated protein-like 2 (GabarapL2). Cells lacking Irgm2 are as defective for cell-autonomous host defense to Toxoplasma as pan- Irgm -/- cells lacking all three Irgm proteins, and further, Irgm2 -/- mice succumb to Toxoplasma infections as readily as pan- Irgm -/- mice. These findings demonstrate that relative to Irgm1 and Irgm3, Irgm2 plays a distinct but critically important role in host resistance to Toxoplasma .


2021 ◽  
Vol 7 (33) ◽  
pp. eabi6582
Author(s):  
Tao Fu ◽  
Mingfang Zhang ◽  
Zixuan Zhou ◽  
Ping Wu ◽  
Chao Peng ◽  
...  

The recruitment of Unc-51-like kinase and TANK-binding kinase 1 complexes is essential for Nuclear dot protein 52-mediated selective autophagy and relies on the specific association of NDP52, RB1-inducible coiled-coil protein 1, and Nak-associated protein 1 (5-azacytidine-induced protein 2, AZI2). However, the underlying molecular mechanism remains elusive. Here, we find that except for the NDP52 SKIP carboxyl homology (SKICH)/RB1CC1 coiled-coil interaction, the LC3-interacting region of NDP52 can directly interact with the RB1CC1 Claw domain, as that of NAP1 FIP200-binding region (FIR). The determined crystal structures of NDP52 SKICH/RB1CC1 complex, NAP1 FIR/RB1CC1 complex, and the related NAP1 FIR/Gamma-aminobutyric acid receptor-associated protein complex not only elucidate the molecular bases underpinning the interactions of RB1CC1 with NDP52 and NAP1 but also reveal that RB1CC1 Claw and Autophagy-related protein 8 family proteins are competitive in binding to NAP1 and NDP52. Overall, our findings provide mechanistic insights into the interactions of NDP52, NAP1 with RB1CC1 and ATG8 family proteins.


Sign in / Sign up

Export Citation Format

Share Document