scholarly journals The strongest monotone degree condition for n-connectedness of a graph

1974 ◽  
Vol 16 (2) ◽  
pp. 162-165 ◽  
Author(s):  
F.T Boesch
Keyword(s):  
2014 ◽  
Vol 06 (03) ◽  
pp. 1450043
Author(s):  
Bo Ning ◽  
Shenggui Zhang ◽  
Bing Chen

Let claw be the graph K1,3. A graph G on n ≥ 3 vertices is called o-heavy if each induced claw of G has a pair of end-vertices with degree sum at least n, and called 1-heavy if at least one end-vertex of each induced claw of G has degree at least n/2. In this note, we show that every 2-connected o-heavy or 3-connected 1-heavy graph is Hamiltonian if we restrict Fan-type degree condition or neighborhood intersection condition to certain pairs of vertices in some small induced subgraphs of the graph. Our results improve or extend previous results of Broersma et al., Chen et al., Fan, Goodman and Hedetniemi, Gould and Jacobson, and Shi on the existence of Hamilton cycles in graphs.


2010 ◽  
Vol 27 (1) ◽  
pp. 135-140
Author(s):  
Camino Balbuena ◽  
Alberto Márquez ◽  
José Ramón Portillo

10.37236/499 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Ingo Schiermeyer ◽  
Anders Yeo

For a graph $G$, let $\gamma(G)$ denote the domination number of $G$ and let $\delta(G)$ denote the minimum degree among the vertices of $G$. A vertex $x$ is called a bad-cut-vertex of $G$ if $G-x$ contains a component, $C_x$, which is an induced $4$-cycle and $x$ is adjacent to at least one but at most three vertices on $C_x$. A cycle $C$ is called a special-cycle if $C$ is a $5$-cycle in $G$ such that if $u$ and $v$ are consecutive vertices on $C$, then at least one of $u$ and $v$ has degree $2$ in $G$. We let ${\rm bc}(G)$ denote the number of bad-cut-vertices in $G$, and ${\rm sc}(G)$ the maximum number of vertex disjoint special-cycles in $G$ that contain no bad-cut-vertices. We say that a graph is $(C_4,C_5)$-free if it has no induced $4$-cycle or $5$-cycle. Bruce Reed [Paths, stars and the number three. Combin. Probab. Comput. 5 (1996), 277–295] showed that if $G$ is a graph of order $n$ with $\delta(G) \ge 3$, then $\gamma(G) \le 3n/8$. In this paper, we relax the minimum degree condition from three to two. Let $G$ be a connected graph of order $n \ge 14$ with $\delta(G) \ge 2$. As an application of Reed's result, we show that $\gamma(G) \le \frac{1}{8} ( 3n + {\rm sc}(G) + {\rm bc}(G))$. As a consequence of this result, we have that (i) $\gamma(G) \le 2n/5$; (ii) if $G$ contains no special-cycle and no bad-cut-vertex, then $\gamma(G) \le 3n/8$; (iii) if $G$ is $(C_4,C_5)$-free, then $\gamma(G) \le 3n/8$; (iv) if $G$ is $2$-connected and $d_G(u) + d_G(v) \ge 5$ for every two adjacent vertices $u$ and $v$, then $\gamma(G) \le 3n/8$. All bounds are sharp.


10.37236/784 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Joanna Polcyn

Quasi-random graphs have the property that the densities of almost all pairs of large subsets of vertices are similar, and therefore we cannot expect too large empty or complete bipartite induced subgraphs in these graphs. In this paper we answer the question what is the largest possible size of such subgraphs. As an application, a degree condition that guarantees the connection by short paths in quasi-random pairs is stated.


Author(s):  
Zhen Wang ◽  
Ming-Jing Zhao ◽  
Zhi-Xi Wang

The degree conjecture for bipartite quantum states which are normalized graph Laplacians was first put forward by Braunstein et al. [Phys. Rev. A 73 (2006) 012320]. The degree criterion, which is equivalent to PPT criterion, is simpler and more efficient to detect the separability of quantum states associated with graphs. Hassan et al. settled the degree conjecture for the separability of multipartite quantum states in [J. Math. Phys. 49 (2008) 0121105]. It is proved that the conjecture is true for pure multipartite quantum states. However, the degree condition is only necessary for separability of a class of quantum mixed states. It does not apply to all mixed states. In this paper, we show that the degree conjecture holds for the mixed quantum states of nearest point graph. As a byproduct, the degree criterion is necessary and sufficient for multipartite separability of [Formula: see text]-qubit quantum states associated with graphs.


2020 ◽  
Vol 161 (2) ◽  
pp. 647-699
Author(s):  
J. Polcyn ◽  
Chr. Reiher ◽  
V. Rödl ◽  
A. Ruciński ◽  
M. Schacht ◽  
...  

2016 ◽  
Vol 339 (8) ◽  
pp. 2042-2050 ◽  
Author(s):  
Yanmei Hong ◽  
Qinghai Liu ◽  
Hong-Jian Lai
Keyword(s):  

2014 ◽  
Vol 34 (4) ◽  
pp. 801
Author(s):  
Junquing Cai ◽  
Hao Li ◽  
Wantao Ning

COMBINATORICA ◽  
2014 ◽  
Vol 34 (3) ◽  
pp. 279-298 ◽  
Author(s):  
Matt Devos ◽  
Zdeněk Dvořák ◽  
Jacob Fox ◽  
Jessica McDonald ◽  
Bojan Mohar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document