95/04016 Advanced materials '93, V — Transactions of the Materials Research Soc. of Japan Vol. 18. Part A. Ecomaterials. Part B. Shape memory materials and hydrides

1995 ◽  
Vol 36 (4) ◽  
pp. 286
Author(s):  
Ashutosh Singh ◽  
◽  
Ravi Butola ◽  
Jitendra Bhaskar ◽  

Improvements in soft robotics, materials, and flexible gripper technology made it possible for the soft grippers to advance rapidly. A brief analysis of soft robotic grippers featuring various material collections, physical rules, and system architectures is provided here. Soft gripping is divided into three technologies, enabling gripping with: a) actuation, b) material used, and c) Use of 3D printing in fabricating grippers. An informative analysis is provided of every form. Similar to stiff grippers, flexible and elastic end-effectors may also grab or control a broader variety of objects. The inherent versatility of the materials is increasingly being used to study advanced materials and soft structures, particularly silicone elastomers, shape-memory materials, active polymers, and gels, in the development of compact, simple, and more versatile grippers. For future work, enhanced structures, techniques, and senses play a prominent part.


JOM ◽  
2000 ◽  
Vol 52 (10) ◽  
pp. 35-35 ◽  
Author(s):  
Peter K. Liaw

2010 ◽  
Vol 156-157 ◽  
pp. 677-677

This paper has been published in Advanced Materials Research Volumes 148 - 149, pp 544 http://www.scientific.net/AMR.148-149.544


2017 ◽  
Vol 136 ◽  
pp. 238-248 ◽  
Author(s):  
L. Sun ◽  
W.M. Huang ◽  
T.X. Wang ◽  
H.M. Chen ◽  
C. Renata ◽  
...  

Author(s):  
Timur Sh. KOMBAEV ◽  
Mikhail K. ARTEMOV ◽  
Valentin K. SYSOEV ◽  
Dmitry S. DEZHIN

It is proposed to develop a small spacecraft for an experiment using high-temperature superconductors (HTS) and shape memory materials. The purpose of the experiment is to test a technological capability of creating a strong magnetic field on the small spacecraft using HTS and shape memory materials for deployed large-area structures, and study the magnetic field interaction with the solar wind plasma and the resulting force impact on the small spacecraft. This article is of a polemical character and makes it possible to take a fresh look at the applicability of new technologies in space-system engineering. Key words: high-temperature superconductors, shape memory materials, solar wind, spacecraft.


Sign in / Sign up

Export Citation Format

Share Document