system architectures
Recently Published Documents


TOTAL DOCUMENTS

965
(FIVE YEARS 215)

H-INDEX

34
(FIVE YEARS 8)

2022 ◽  
Vol 27 (3) ◽  
pp. 481-494
Author(s):  
Bowen Wang ◽  
Haixin Song ◽  
Woogeun Rhee ◽  
Zhihua Wang

Author(s):  
Noureen Talpur ◽  
Said Jadid Abdulkadir ◽  
Hitham Alhussian ◽  
·Mohd Hilmi Hasan ◽  
Norshakirah Aziz ◽  
...  

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 452
Author(s):  
Nour Alhuda Sulieman ◽  
Lorenzo Ricciardi Celsi ◽  
Wei Li ◽  
Albert Zomaya ◽  
Massimo Villari

Edge computing is a distributed computing paradigm such that client data are processed at the periphery of the network, as close as possible to the originating source. Since the 21st century has come to be known as the century of data due to the rapid increase in the quantity of exchanged data worldwide (especially in smart city applications such as autonomous vehicles), collecting and processing such data from sensors and Internet of Things devices operating in real time from remote locations and inhospitable operating environments almost anywhere in the world is a relevant emerging need. Indeed, edge computing is reshaping information technology and business computing. In this respect, the paper is aimed at providing a comprehensive overview of what edge computing is as well as the most relevant edge use cases, tradeoffs, and implementation considerations. In particular, this review article is focused on highlighting (i) the most recent trends relative to edge computing emerging in the research field and (ii) the main businesses that are taking operations at the edge as well as the most used edge computing platforms (both proprietary and open source). First, the paper summarizes the concept of edge computing and compares it with cloud computing. After that, we discuss the challenges of optimal server placement, data security in edge networks, hybrid edge-cloud computing, simulation platforms for edge computing, and state-of-the-art improved edge networks. Finally, we explain the edge computing applications to 5G/6G networks and industrial internet of things. Several studies review a set of attractive edge features, system architectures, and edge application platforms that impact different industry sectors. The experimental results achieved in the cited works are reported in order to prove how edge computing improves the efficiency of Internet of Things networks. On the other hand, the work highlights possible vulnerabilities and open issues emerging in the context of edge computing architectures, thus proposing future directions to be investigated.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 304
Author(s):  
Akshay Nag Srinath ◽  
Álvaro Pena Pena López ◽  
Seyed Alireza Miran Miran Fashandi ◽  
Sylvain Lechat ◽  
Giampiero di di Legge ◽  
...  

The thermal management system architectures proposed for hydrogen-powered propulsion technologies are critically reviewed and assessed. The objectives of this paper are to determine the system-level shortcomings and to recognise the remaining challenges and research questions that need to be sorted out in order to enable this disruptive technology to be utilised by propulsion system manufacturers. Initially, a scientometrics based co-word analysis is conducted to identify the milestones for the literature review as well as to illustrate the connections between relevant ideas by considering the patterns of co-occurrence of words. Then, a historical review of the proposed embodiments and concepts dating back to 1995 is followed. Next, feasible thermal management system architectures are classified into three distinct classes and its components are discussed. These architectures are further extended and adapted for the application of hydrogen-powered fuel cells in aviation. This climaxes with the assessment of the available evidence to verify the reasons why no hydrogen-powered propulsion thermal management system architecture has yet been approved for commercial production. Finally, the remaining research challenges are identified through a systematic examination of the critical areas in thermal management systems for application to hydrogen-powered air vehicles’ engine cooling. The proposed solutions are discussed from weight, cost, complexity, and impact points of view by a system-level assessment of the critical areas in the field.


Author(s):  
Carlos Cabaleiro de la Hoz ◽  
Marco Fioriti

Flight control surfaces guarantee a safe and precise control of the aircraft. As a result, hinge moments are generated. These moments need to be estimated in order to properly size the aircraft actuators. Control surfaces include the ailerons, rudder, elevator, flaps, slats, and spoilers, and they are moved by electric or hydraulic actuators. Actuator sizing is the key when comparing different flight control system architectures. This fact becomes even more important when developing more-electric aircraft. Hinge moments need to be estimated so that the actuators can be properly sized and their effects on the overall aircraft design are measured. Hinge moments are difficult to estimate on the early stages of the design process due to the large number of required input. Detailed information about the airfoil, wing surfaces, control surfaces, and actuators is needed but yet not known on early design phases. The objective of this paper is to propose a new methodology for flight control system sizing, including mass and power estimation. A surrogate model for the hinge moment estimation is also proposed and used. The main advantage of this new methodology is that all the components and actuators can be properly sized instead of just having overall system results. The whole system can now be sized more in detail during the preliminary design process, which allows to have a more reliable estimation and to perform systems installation analysis. Results show a reliable system mass estimation similar to the results obtained with other known methods and also providing the weight for each component individually.


2021 ◽  
Author(s):  
Gary S.D. Farrow

This chapter explores how traditional system architectures are being affected by the emergence of ‘Uber’ style platform models that provide business services with huge global reach. The specific demands and characteristics of such platforms are discussed which in turn dictate their technical requirements. The chapter will explain how middleware technologies have evolved to support today’s requirements for such massively scalable platform solutions. The latest preferred architectural paradigms dictate the use of micro-services and APIs are central to the design of such platforms. Similarly, event based architectures are another key paradigm that must be supported. The role of modern middleware and cloud technologies to support these newly dominant paradigms will be explained. Key architectural patterns pertinent to global platform solutions are illustrated. The role of modern middleware in fulfilling these patterns is highlighted using real-world examples from the field of open finance.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8458
Author(s):  
Paweł Jabłoński ◽  
Joanna Iwaniec ◽  
Michał Jabłoński

ADAS and autonomous technologies in vehicles become more and more complex, which increases development time and expenses. This paper presents a new real-time ADAS multisensory validation system, which can speed up the development and implementation processes while lowering its cost. The proposed test system integrates a high-quality 3D CARLA simulator with a real-time-based automation platform. We present system experimental verifications on several types of sensors and testing system architectures. The first, open-loop experiment explains the real-time capabilities of the system based on the Mobileye 6 camera sensor detections. The second experiment runs a real-time closed-loop test of a lane-keeping algorithm (LKA) based on the Mobileye 6 line detection. The last experiment presents a simulation of Velodyne VLP-16 lidar, which runs a free space detection algorithm. Simulated lidar output is compared with the real lidar performance. We show that the platform generates reproducible results and allows closed-loop operation which, combined with a real-time collection of event information, promises good scalability toward complex ADAS or autonomous functionalities testing.


2021 ◽  
Author(s):  
Janine Kavanagh ◽  
Thomas Jones ◽  
David Dennis

Scaled analogue experiments were conducted to explore the effect of magma flow regimes, characterised by the Reynolds number (Re), on the transit of magma through the lithosphere via fractures. An elastic, transparent gelatine solid (the crust analogue) was injected by a fluid (magma analogue) to create a thin, vertical, and penny-shaped crack that is analogous to a magma-filled crack (dyke). A vertical laser sheet fluoresced passive-tracer particles suspended in the injected fluid, and particle image velocity (PIV) was used to map the location, magnitude, and direction of flow within the growing dyke from its inception to its surface rupture. Experiments were conducted using water, hydroxyethyl cellulose (HEC) or xanthan gum (XG) as the magma analogue. The results suggest that Re has significant impact on the direction of fluid flow within propagating dykes: Re > 0.1 (jet-flow) is characterised by a rapid central rising fluid jet and downflow at the dyke margin, whereas Re < 0.1 (creeping flow) is characterised by broadly uniform velocities across the dyke plane. Re may be underestimated by up to two orders of magnitude if tip velocity rather than internal fluid velocity is used. In nature, these different flow regimes would affect the petrological, geochemical, geophysical, and geodetic measurements of magma movement, key information upon which reconstructions of volcanic plumbing system architectures and their growth are based.


Sign in / Sign up

Export Citation Format

Share Document