Production of extracellular enzyme by the white-rot fungus Dichomitus squalens in cellulose-containing liquid culture

1986 ◽  
Vol 8 (6) ◽  
pp. 381
Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1526
Author(s):  
Joanna E. Kowalczyk ◽  
Shreya Saha ◽  
Miia R. Mäkelä

Dichomitus squalens is an emerging reference species that can be used to investigate white-rot fungal plant biomass degradation, as it has flexible physiology to utilize different types of biomass as sources of carbon and energy. Recent comparative (post-) genomic studies on D. squalens resulted in an increasingly detailed knowledge of the genes and enzymes involved in the lignocellulose breakdown in this fungus and showed a complex transcriptional response in the presence of lignocellulose-derived compounds. To fully utilize this increasing amount of data, efficient and reliable genetic manipulation tools are needed, e.g., to characterize the function of certain proteins in vivo and facilitate the construction of strains with enhanced lignocellulolytic capabilities. However, precise genome alterations are often very difficult in wild-type basidiomycetes partially due to extremely low frequencies of homology directed recombination (HDR) and limited availability of selectable markers. To overcome these obstacles, we assessed various Cas9-single guide RNA (sgRNA) ribonucleoprotein (RNP) -based strategies for selectable homology and non-homologous end joining (NHEJ) -based gene editing in D. squalens. We also showed an induction of HDR-based genetic modifications by using single-stranded oligodeoxynucleotides (ssODNs) in a basidiomycete fungus for the first time. This paper provides directions for the application of targeted CRISPR/Cas9-based genome editing in D. squalens and other wild-type (basidiomycete) fungi.


2018 ◽  
Vol 6 (3) ◽  
pp. 2878-2882 ◽  
Author(s):  
Mila Marinović ◽  
Paula Nousiainen ◽  
Adiphol Dilokpimol ◽  
Jussi Kontro ◽  
Robin Moore ◽  
...  

2002 ◽  
pp. 287-297
Author(s):  
G. Ruiz-Aguilar ◽  
J. Fernández-Sánchez ◽  
R. Rodríguez-Vázquez ◽  
H. M. Poggi-Varaldo ◽  
F. Esparza-García ◽  
...  

2018 ◽  
Vol 84 (11) ◽  
Author(s):  
Sara Casado López ◽  
Mao Peng ◽  
Tedros Yonatan Issak ◽  
Paul Daly ◽  
Ronald P. de Vries ◽  
...  

ABSTRACTFungi can decompose plant biomass into small oligo- and monosaccharides to be used as carbon sources. Some of these small molecules may induce metabolic pathways and the production of extracellular enzymes targeted for degradation of plant cell wall polymers. Despite extensive studies in ascomycete fungi, little is known about the nature of inducers for the lignocellulolytic systems of basidiomycetes. In this study, we analyzed six sugars known to induce the expression of lignocellulolytic genes in ascomycetes for their role as inducers in the basidiomycete white-rot fungusDichomitus squalensusing a transcriptomic approach. This identified cellobiose andl-rhamnose as the main inducers of cellulolytic and pectinolytic genes, respectively, ofD. squalens. Our results also identified differences in gene expression patterns between dikaryotic and monokaryotic strains ofD. squalenscultivated on plant biomass-derived monosaccharides and the disaccharide cellobiose. This suggests that despite conservation of the induction between these two genetic forms ofD. squalens, the fine-tuning in the gene regulation of lignocellulose conversion is differently organized in these strains.IMPORTANCEWood-decomposing basidiomycete fungi have a major role in the global carbon cycle and are promising candidates for lignocellulosic biorefinery applications. However, information on which components trigger enzyme production is currently lacking, which is crucial for the efficient use of these fungi in biotechnology. In this study, transcriptomes of the white-rot fungusDichomitus squalensfrom plant biomass-derived monosaccharide and cellobiose cultures were studied to identify compounds that induce the expression of genes involved in plant biomass degradation.


Chemosphere ◽  
2007 ◽  
Vol 69 (5) ◽  
pp. 795-802 ◽  
Author(s):  
Ivana Eichlerová ◽  
Ladislav Homolka ◽  
Oldřich Benada ◽  
Olga Kofroňová ◽  
Tomáš Hubálek ◽  
...  

2017 ◽  
Vol 143 ◽  
pp. 38-43 ◽  
Author(s):  
Paul Daly ◽  
Gillian G. Slaghek ◽  
Sara Casado López ◽  
Ad Wiebenga ◽  
Kristiina S. Hilden ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document