orange g
Recently Published Documents


TOTAL DOCUMENTS

334
(FIVE YEARS 80)

H-INDEX

34
(FIVE YEARS 8)

2021 ◽  
Vol 13 (2) ◽  
pp. 10-31
Author(s):  
Saba A. Saeed1 ◽  
◽  
Dunya E. AL-Mammar2 ◽  

This study examined the adsorption behavior of anionic dye (orange G) from aqueous solution onto the raw and activated a mixture of illite, kaolinite and chlorite clays from area of Zorbatiya (east of Iraq).The chemical treatment involved alkali and acid activation. The alkali activation obtained by treated the raw clay (RC) with 5M NaOH (ACSO) and the acid activation founded by treated it with 0.25M HCl (ACH) and 0.25M H_2 〖SO〗_4 (ACS). The thermal treatment carried out by calcination the produce activated clay at 750oC for acid activation and 105oC for alkali activation. Batch adsorption method was used to study the adsorption of orange G dye onto raw and activated clays. The impact of different factors related to the adsorption process was studied such as: agitation time, clay dosage, solution pH, starting OG dye concentration, temperature and ionic strength. The adsorption process was described by using Langmuir, Freundlich, Temkin and Dubinin-Raduchkevish isotherm models. Thermodynamic functions like change in enthalpy〖∆H〗^°, change in entropy 〖∆S〗^° and change in Gibbs free energy 〖∆G〗^°were estimated based on Vanʼt Hoff equation.


Author(s):  
Heba Kashour ◽  
Lina Soubh

In this study, two analytical methods were used to determinate the protein, the ammonia ion selective electrode method and dye binding method using orange G and the spectrophotometer at λmax 478 nm by determining the linearity, accuracy, precision, limit of detection and limit of quantitation of each. In comparison, the dye binding method was chosen for its accuracy, repeatability, sensitivity (LOD, LOQ) and speed of performance. After that, it was applied to samples of prepared plain yogurt to study effect of different properties (source, heat treatment and type) of used milk on protein content of plain yogurt.


2021 ◽  
pp. 29-38
Author(s):  
Md Abdullah Bin Samad ◽  
Md. Amjad Hossain ◽  
Tajmeri S. A. Islam ◽  
Waziha Farha

The increasing water pollution is a great concern as millions of people don't have access to pure water in Bangladesh. A considerable number of people are dying of contaminated water each year not only in Bangladesh but all over the world. Many industries, tanneries, companies, etc. are emitting lots of environmentally hazardous materials into the surrounding water. Many of these pollutants are industrial dyes. The dyes loss from the industrial water during dyeing operation damage the esthetic merit of surface water. They minimize light penetration, hamper aquatic lives and hinder photosynthesis. Some dyes may also have toxic, mutagenic, and carcinogenic characteristics. The purpose of this research is to get rid of the pollutant dye Orange G before the water is contaminated. A method named photo-degradation using different light sources is used to mineralize Orange G dye with composite materials including TiO2-ZnO. This composite was prepared by the hydrothermal method. The photocatalytic behavior of the prepared composite TiO2-ZnO helps in minimizing the effect of this dye to save the water from contamination. The composite compoundwas studied by experimenting on photo-degradation with Orange G under different light sources such as visible light, UV light, and sunlight. The photo-degradation percentage was found to maximum of 79.60 in the presence of sunlight. The percentages of photo-degradation under UV light and visible light were 48.0 and 18.40 respectively.


2021 ◽  
Author(s):  
ABDELAZIZ IMGHARN ◽  
Nouh Aarab ◽  
Abdelghani Hsini ◽  
Yassine Naciri ◽  
Mohammed Elhoudi ◽  
...  

Abstract The aim of this work is to investigate the adsorption performance of orange G (OG) dye from aqueous solutions employing PANI@sawdust biocomposite enrobed by calcium-alginate biobeads (Alg-PANI@SD). The as-prepared adsorbent was characterized by scanning-electron-microscopy (SEM), X-ray energy dispersive spectroscopy (EDS) and Fourier transforms infrared (FT-IR) spectroscopy, and used to remove Orange G dye from water. batch tests were performed as a function of adsorbent dosage, pH, contact time, interfering ions and initial OG dye concentration. Experimental results show that the kinetic model of pseudo-first-order (PFO) and Freundlich isotherm provided a good fitting of the whole experimental data. The results revealed that the as-prepared tricomposite Alg-PANI@SD, has the potential to be applied as a low-cost adsorbent for the adsorption of OG dye from aqueous media.


Author(s):  
Lahoucine Brini ◽  
Khalihana H’Maida ◽  
Abdelaziz Imgharn ◽  
Abdelghani Hsini ◽  
Yassine Naciri ◽  
...  
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6144
Author(s):  
Madeeha Aslam ◽  
Fozia Fozia ◽  
Anadil Gul ◽  
Ijaz Ahmad ◽  
Riaz Ullah ◽  
...  

Green synthesis of silver nanoparticles (AgNPs) employing an aqueous plant extract has emerged as a viable eco-friendly method. The aim of the study was to synthesize AgNPs by using plant extract of Sanvitalia procumbens (creeping zinnia) in which the phytochemicals present in plant extract act as a stabilizing and reducing agent. For the stability of the synthesized AgNPs, different parameters like AgNO3 concentration, volume ratios of AgNO3, temperature, pH, and contact time were studied. Further, AgNPs were characterized by UV–visible spectroscopy, FT-IR (Fourier Transform Infrared Spectroscopy), XRD (X-ray Diffraction), SEM (Scanning Electron Microscopy), and EDX (Energy Dispersive X-ray Spectrometer) analysis. FT-IR analysis showed that the plant extract contained essential functional groups like O–H stretching of carboxylic acid, N–H stretching of secondary amides, and C–N stretching of aromatic amines, and C–O indicates the vibration of alcohol, ester, and carboxylic acid that facilitated in the green synthesis of AgNPs. The crystalline nature of synthesized AgNPs was confirmed by XRD, while the elemental composition of AgNPs was detected by energy dispersive X-ray analysis (EDX). SEM studies showed the mean particle diameter of silver nanoparticles. The synthesized AgNPs were used for photocatalytic degradation of Orange G and Direct blue-15 (OG and DB-15), which were analyzed by UV-visible spectroscopy. Maximum degradation percentage of OG and DB-15 azo dyes was observed, without any significant silver leaching, thereby signifying notable photocatalytic properties of AgNPs.


Author(s):  
Joan Chebet ◽  
Ramesh S. Masarbo ◽  
T. B. Karegoudar ◽  
Anand S. Nayak ◽  
Sathisha J. Gonchigar ◽  
...  
Keyword(s):  
Azo Dye ◽  

Sign in / Sign up

Export Citation Format

Share Document