Single particle kinetic theory and nuclear physics

1984 ◽  
Vol 11 ◽  
pp. 549-563
Author(s):  
David G. Long
1979 ◽  
Vol 19 (1) ◽  
pp. 416-418 ◽  
Author(s):  
H. van Beijeren ◽  
J. R. Dorfman

1967 ◽  
Vol 20 (3) ◽  
pp. 205 ◽  
Author(s):  
Kallash Kumar

The Chapman-Enskog method of solving the Boltzmann equation is presented in a simpler and more efficient form. For this purpose all the operations involving the usual polynomials are carried out in spherical polar coordinates, and the Racah-Wigner methods of dealing with irreducible tensors are used throughout. The expressions for the collision integral and the associated bracket expressions of kinetic theory are derived in terms of Talmi coefficients, which have been extensively studied in the harmonic oscillator shell model of nuclear physics.


1978 ◽  
Vol 17 (3) ◽  
pp. 1181-1204 ◽  
Author(s):  
J. R. Mehaffey ◽  
Robert I. Cukier

1991 ◽  
Vol 503 (5) ◽  
pp. 305-318
Author(s):  
David G. Long

2021 ◽  
Author(s):  
Adam Vernon ◽  
Ronald Fernando Garcia Ruiz ◽  
T. Miyagi ◽  
Cory Binnersley ◽  
Jon Billowes ◽  
...  

Abstract In spite of the high-density and strongly correlated nature of the atomic nucleus, experimental and theoretical evidence suggests that around particular 'magic' numbers of nucleons, nuclear properties are governed by a single unpaired nucleon1,2. A microscopic understanding of the extent of this behaviour and its evolution in neutron-rich nuclei remains an open question in nuclear physics 3-5. A textbook example is the electromagnetic moments of indium (Z = 49) 6, which are dominated by a hole with respect to the proton magic number Z = 50 nucleus. They exhibit a remarkably constant behaviour over a large range of odd-mass isotopes, previously interpreted as pure "single-particle behaviour". Here, we present precision laser spectroscopy measurements performed to investigate the validity of this simple single-particle picture. Observation of an abrupt change in the dipole moment at N = 82 reveals that while the single-particle picture indeed dominates at neutron magic number N = 82 2,7, it does not for previously studied isotopes. We present state-of-the-art nuclear theory developed to investigate the details of the nuclear forces that describe the experimental results. The emergence and disappearance of single-particle behaviour was reproduced from an ab initio theory, including challenging many-body correlations in these large, complex nuclei. The inclusion of time-symmetry-breaking mean fields is shown to be essential for a correct description of the nuclear electromagnetic properties within the Density Functional Theory framework. Until now, such time-odd channels have been poorly constrained, but are essential to provide accurate predictions of nuclear properties necessary for searches of new physics with neutrinos 8,9 and studies of fundamental symmetries 10,11. These findings are key to understand the microscopic origin of nuclear electromagnetism and the emergence of single-particle phenomena from complex nuclei.


Author(s):  
Shad Husain

This topic deals in the study of correlation of ground and excited states of even nuclei like 160 and 4He. The main objective of present work is to develop more theoretical techniques applicable in nuclear physics. The work is also extended to discrete excited states as well as odd even nuclei. The work is useful for the calculation of nuclear many body problems for spherically symmetric nuclear quantization representation. The ground state calculation of 160 and 4He are done using G. matrix, which also help in calculation of ground state binding energy and one body two body densities.


Sign in / Sign up

Export Citation Format

Share Document