Assessment of floor stability during steep seam mining (In Russian)

2013 ◽  
Vol 448-453 ◽  
pp. 3888-3892
Author(s):  
Ke Min Wei ◽  
Mao Sen Zhao ◽  
Ze Kang Wen ◽  
You Ling Fang

Use Taiping coal mines second horizontal (+1100m~+900 m level ) 1#, 3# and 5# coal seam in Panzhihua Baoding as the research object, apply the problem solving nonlinear large deformation finite difference method (FLAC), to research the steep multi-seam mining of pressure distribution and characteristics of fracture zone. The results show that: (1)During the course of three coal mining extraction, the stress of goaf surrounding rocks will be changed. (2)When the nearby coal is mining, the coal pillar come into being stress concentration near the area. when the mining work continues, the goaf will have an effect on the protection pillar, which is similar to the "liberate". the effect of coal pillar and stress concentration nearby will be eased; (3)After the coal mining, plastic failure has occurred over the protection pillar, forming a water guide channel. Research results can be as a reference for similar steep seam mining.


2013 ◽  
Vol 448-453 ◽  
pp. 3863-3868
Author(s):  
Guo Ming Cheng ◽  
Tong Zu Liu ◽  
Bin Zhi

In China, surface subsidence caused by steep coal seam mining has affected the safe operation of pipelines in recent years. The study site is one coal mine, where the gas pipeline from Shanshan to Urumqi is across. FLAC3D was adopted to study subsidence-induced stress on the pipeline, and the numerical model was calibrated with the measurement data. Visualization of alarm levels on the pipeline was obtained by integrating the usage of Fish function embedded in FLAC3D and Tecplot. The simulations reveal that the stress on the pipeline is closely related to the excavation depth. The stress on the pipeline increases with the excavation depth increasing when mining the 1st, 2nd, and 3rd levels, whereas the stress on the pipeline decreases slightly with the excavation depth increasing when mining the fourth, fifth, and sixth levels. The maximum stress on the pipeline occurs after mining the 3rd level. The possible damage to the pipe is at the upper-right side. Therefore, the results are helpful to prevent and reduce the impact of subsidence on the pipeline.


Sign in / Sign up

Export Citation Format

Share Document