thin bedrock
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 17)

H-INDEX

5
(FIVE YEARS 3)

2021 ◽  
Vol 11 (24) ◽  
pp. 11717
Author(s):  
Qingliang Chang ◽  
Xingjie Yao ◽  
Qiang Leng ◽  
Hao Cheng ◽  
Fengfeng Wu ◽  
...  

Filling mining plays an important role in controlling surface subsidence. To study the movement of overburdened rock in filling mining under thick loose layers, a numerical simulation combing field measurement in CT30101 working face in the Mahuangliang coal mine was tested. The results show that different filling rates and filling body strength have different influences on roof and surface movement. The filling rate has a greater impact, which is the main control factor. The filling stress and roof tensile stress decrease gradually with roadway filling. The filling body stress and roof tensile stress in the first and second rounds are far greater than in the fourth round. After the completion of filling, the first and second round of filling bodies mainly bear the overburden, and the total deformation of the surrounding rock of the main transport roadway is very small, and therefore the displacement of the overburdened rock is controllable. The field monitoring results also show that the overburdened rock became stable after several fillings rounds. Combing the numerical modeling and field tests results, this study can be a guideline for similar geological conditions especially for coal mining under thick loose layers and thin bedrock.


2020 ◽  
Vol 10 (8) ◽  
pp. 2874
Author(s):  
Xugang Lian ◽  
Yanjun Zhang ◽  
Hongyan Yuan ◽  
Chenlong Wang ◽  
Junting Guo ◽  
...  

The surface discontinuous deformation caused by coal mining has great damage to the ecological environment and threatens the safety of human lives. Focusing on the problem of discontinuous deformation (ground fissures and collapsed pits) in mining areas with a thick loess and thin bedrock, this paper uses a coal panel in southern Shanxi in China as research background, and uses field investigation, theoretical analysis and the particle flow code 2D (PFC2D) numerical simulation method to study the movement of overburden and discontinuous ground deformation of mining areas with a thick loess layer and a thin bedrock. The results show that with the continual advance of the working face, the failure of the overlying rock, the changing of force chain shape and the development of cracks under this geological and mining condition have their unique rules. This study analyzes the law of movement of overburden in coal seam mining, explains why discontinuous deformation of the surface occurs in case of a thick loess layer and thin bedrock, and provides reference for the prediction of fracture development under the same geological conditions and the application of the PFC2D in coal seam mining in different geological conditions.


2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Guangming Wu ◽  
Haibo Bai ◽  
Luyuan Wu ◽  
Shixin He ◽  
Bin Du

The water-blocking properties of the clay layer at the bottom of the Cenozoic overburden in China are an important factor influencing the safety of thin bedrock coal seam mining. Clay has remolding properties that are unlike the nonreversible characteristics of cracks in brittle rock, and failure cracks in clay can reclose or continue to expand under the influence of different external factors. In this work, the soil layer on top of thin bedrock is the research object, and the influences of the particle composition, water content, soil layer thickness, and crack width on the crack development-closure state of soil layer are analyzed by the orthogonal test method. Visual analysis shows that the order of influence of each factor on the stability of soil layer is the crack width, particle composition, soil layer thickness, and water content. The stability of soil layer decreases with increasing crack width and sand content and decreasing soil layer thickness; in addition, soil layer stability decreases first and then increases with increasing water content. Further variance analysis shows that the crack width and particle composition are key factors that impact the stability of soil layer and that the soil layer thickness has some influence, while the water content has little effect on the stability of soil layer. In addition, the crack will reclose when the sand content in soil is less than 50% and the crack width is less than or equal to 1.0 mm, and the soil layer is prone to further failure when the sand content in soil is more than 50% and the crack width is greater than or equal to 3.0 mm; when the soil layer thickness is 15.0 cm, its stability is better than when the soil layer thickness is 10.0 cm or 5.0 cm.


Sign in / Sign up

Export Citation Format

Share Document