Intraplate extensional tectonics of the Eastern Basin Range: inferences on structural style from seismic reflection data, regional tectonics, and thermal mechanical models of brittle- ductile deformation

Geology ◽  
1983 ◽  
Vol 11 (9) ◽  
pp. 532 ◽  
Author(s):  
Richard W. Allmendinger ◽  
James W. Sharp ◽  
Douglas Von Tish ◽  
Laura Serpa ◽  
Larry Brown ◽  
...  

1990 ◽  
Vol 27 (4) ◽  
pp. 494-500 ◽  
Author(s):  
M. C. Dentith ◽  
J. Hall

The application of section-balancing techniques to the analysis of deep seismic sections requires account be taken of isostasy and ductile-deformation processes. Structures imaged by deep seismic reflection profiling across the southern Grand Banks, offshore eastern Canada, are analyzed in this way. Correlations of dipping events in the deep crust, interpreted as shear zones, with faults recognized in the shallow part of the section are tested by attempting to restore the sections to their undeformed state by reversing the displacements on the faults. This process tests the geometric compatibility of the interpreted fault and the structures in its hanging wall. Our models suggest that the faults bounding the Whale and Horseshoe basins detach at the Mohorovičić discontinuity. In contrast, the fault bounding the Jeanne d'Arc Basin detaches within the lower crust.


1998 ◽  
Vol 35 (11) ◽  
pp. 1288-1306 ◽  
Author(s):  
Glen S Stockmal ◽  
Art Slingsby ◽  
John WF Waldron

New seismic reflection data gathered during hydrocarbon exploration in and adjacent to the external Humber zone, western Newfoundland, have important implications for the interpretation of structural style at the Appalachian front. These new data indicate that the structural front is influenced by both thin-skinned and thick-skinned structures. Where the structural front is thin skinned, it is characterized by a triangle zone, or tectonic wedge, similar to structures observed at the southeastern margin of the Canadian Cordillera, and at other orogenic fronts. The thin-skinned tectonic wedge is overridden locally by thick-skinned thrusts, which are generally emergent but are locally blind, forming a thick-skinned tectonic wedge. Timing relationships indicate that, although initial motion occurred during the Early to Middle Ordovician Taconian orogeny, the thin-skinned allochthonous slices in western Newfoundland were not emplaced until Devonian time (the Acadian orogeny). Thick-skinned deformation, which postdates thin-skinned thrusting, probably occurred between Middle Devonian and earliest Carboniferous time.


2006 ◽  
Vol 55 (3) ◽  
pp. 129-139 ◽  
Author(s):  
Avihu Ginzburg ◽  
Moshe Reshef ◽  
Zvi Ben-Avraham ◽  
Uri Schattner

Sign in / Sign up

Export Citation Format

Share Document