Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts. 3. Hydraulic conductivity variability and calculated microdispersivities

1991 ◽  
Vol 27 (5) ◽  
pp. 895-910 ◽  
Author(s):  
Denis R. LeBlanc ◽  
Stephen P. Garabedian ◽  
Kathryn M. Hess ◽  
Lynn W. Gelhar ◽  
Richard D. Quadri ◽  
...  

1991 ◽  
Vol 27 (5) ◽  
pp. 911-924 ◽  
Author(s):  
Stephen P. Garabedian ◽  
Dennis R. LeBlanc ◽  
Lynn W. Gelhar ◽  
Michael A. Celia

1996 ◽  
Vol 32 (5) ◽  
pp. 1209-1222 ◽  
Author(s):  
J. R. Eggleston ◽  
S. A. Rojstaczer ◽  
J. J. Peirce

1999 ◽  
Vol 30 (4-5) ◽  
pp. 333-360 ◽  
Author(s):  
Larry McKay ◽  
Johnny Fredericia ◽  
Melissa Lenczewski ◽  
Jørn Morthorst ◽  
Knud Erik S. Klint

A field experiment shows that rapid downward migration of solutes and microorganisms can occur in a fractured till. A solute tracer, chloride, and a bacteriophage tracer, PRD-1, were added to groundwater and allowed to infiltrate downwards over a 4 × 4 m area. Chloride was detected in horizontal filters at 2.0 m depth within 3-40 days of the start of the tracer test, and PRD-1 was detected in the same filters within 0.27 - 27 days. At 2.8 m depth chloride appeared in all the filters, but PRD-1 appeared in only about one-third of the filters. At 4.0 m depth chloride appeared in about one-third of the filters and trace amounts of PRD-1 were detected in only 2 of the 36 filters. Transport rates and peak tracer concentrations decreased with depth, but at each depth there was a high degree of variability. The transport data is generally consistent with expectations based on hydraulic conductivity measurements and on the observed density of fractures and biopores, both of which decrease with depth. Transport of chloride was apparently retarded by diffusion into the fine-grained matrix between fractures, but the rapid transport of PRD-1, with little dispersion, indicates that it was transported mainly through the fractures.


2004 ◽  
Vol 41 (5) ◽  
pp. 787-795 ◽  
Author(s):  
Robert P Chapuis

This paper assesses methods to predict the saturated hydraulic conductivity, k, of clean sand and gravel. Currently, in engineering, the most widely used predictive methods are those of Hazen and the Naval Facilities Engineering Command (NAVFAC). This paper shows how the Hazen equation, which is valid only for loose packing when the porosity, n, is close to its maximum value, can be extended to any value of n the soil can take when its maximum value of n is known. The resulting extended Hazen equation is compared with the single equation that summarizes the NAVFAC chart. The predictive capacity of the two equations is assessed using published laboratory data for homogenized sand and gravel specimens, with an effective diameter d10 between 0.13 and 1.98 mm and a void ratio e between 0.4 and 1.5. A new equation is proposed, based on a best fit equation in a graph of the logarithm of measured k versus the logarithm of d102e3/(1 + e). The distribution curves of the differences “log(measured k) – log(predicted k)” have mean values of –0.07, –0.21, and 0.00 for the extended Hazen, NAVFAC, and new equations, respectively, with standard deviations of 0.23, 0.36, and 0.10, respectively. Using the values of d10 and e, the new equation predicts a k value usually between 0.5 and 2.0 times the measured k value for the considered data. It is shown that the predictive capacity of this new equation may be extended to natural nonplastic silty soils, but not to crushed soils or plastic silty soils. The paper discusses several factors affecting the inaccuracy of predictions and laboratory test results.Key words: permeability, sand, prediction, porosity, gradation curve.


Sign in / Sign up

Export Citation Format

Share Document