Titanium-based spectrally selective surfaces for solar thermal systems

1983 ◽  
Vol 9 (3) ◽  
pp. 347-363 ◽  
Author(s):  
A.D. Wilson ◽  
J.P. Holmes
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yanpei Tian ◽  
Xiaojie Liu ◽  
Alok Ghanekar ◽  
Fangqi Chen ◽  
Andrew Caratenuto ◽  
...  

AbstractSpectrally selective solar absorbers (SSAs), which harvest heat from sunlight, are the key to concentrated solar thermal systems. An ideal SSA must have an absorptivity of unity in the solar irradiance wavelength region (0.3–2.5 $$\upmu $$ μ m), and its infrared thermal emissivity must be zero to depress spontaneous blackbody irradiation (2.5–25 $$\upmu $$ μ m). Current SSA designs which utilize photonic crystals, metamaterials, or cermets are either cost-inefficient due to the complexity of the required nanofabrication methods, or have limited applicability due to poor thermal stability at high temperatures. We conceptually present blackbody-cavity solar absorber designs with nearly ideal spectrally selective properties, capable of being manufactured at scale. The theoretical analyses show that the unity solar absorptivity of the blackbody cavity and nearly zero infrared emissivity of the SSA’s outer surface allow for a stagnation temperature of 880 $$^\circ $$ ∘ C under 10 suns. The performance surpasses state-of-the-art SSAs manufactured using nanofabrication methods. This design relies only on traditional fabrication methods, such as machining, casting, and polishing. This makes it suitable for large-scale industrial applications, and the “blackbody cavity” feature enables easy integration with existing concentrated solar thermal systems using the parabolic reflector and Fresnel lens as optical concentrators.


2018 ◽  
Vol 176 ◽  
pp. 99-109 ◽  
Author(s):  
Angeliki Kylili ◽  
Paris A. Fokaides ◽  
Andreas Ioannides ◽  
Soteris Kalogirou

2021 ◽  
pp. 60-71
Author(s):  
Tshewang Darjay ◽  
Cheku Dorji ◽  
Tshewang Lhendup ◽  
Martin Elborg

The Royal Government of Bhutan has accorded the highest priority towards diversifying the energy-mix through the promotion of renewable energy technologies. There is a national target to generate 3 MW equivalent of energy from the installation of solar thermal systems alone. However, little investment and priority are given for development of solar thermal applications. Some of the present existing solar water heating (SWH) systems are exhibiting faults which leads to low consumer confidence in SWH technology due to the non-functioning of previous installations which is very detrimental in this introductory stage. This study aims to identify problems of existing SWH systems through field surveys and develop a draft guideline to avoid faults in the future. To analyse the problems with existing SWH systems in Bhutan, the first phase of the study consists of collecting secondary information and opinion from the relevant government sector, local installing companies and end-users. The information on the manufacturer’s products, policy barriers, markets and consumer challenges is also collected. Base on this information, findings on the limitation of existing policy instrument and gap in demand and supply side is described. The second phase of the study comprises field visits to existing SWH system sites. The field surveys of twelve representative existing SWH systems are analyzed. Out of twelve sites, eight SWH systems had critical faults which causes major failure of the system and the other four sites had minor faults. To analyse the faults of existing SWH systems, faults are classified into design faults, plumbing circuit faults, solar collector faults, absorber faults, installation faults and user behavior faults. The major faults which lead to the failure of the existing SWH system are plumbing failure, condensation inside the collector and absorber tube leakage. The causes and solutions of the faults are discussed.


2012 ◽  
Vol 30 ◽  
pp. 134-143 ◽  
Author(s):  
Christian Holter ◽  
Bernhard Gerardts ◽  
Philip Ohnewein ◽  
Angela Dröscher ◽  
Franz Feichtner ◽  
...  

Energies ◽  
2015 ◽  
Vol 8 (6) ◽  
pp. 5725-5737 ◽  
Author(s):  
Rokas Valančius ◽  
Andrius Jurelionis ◽  
Rolandas Jonynas ◽  
Vladislovas Katinas ◽  
Eugenijus Perednis

2018 ◽  
Vol 4 (3) ◽  
pp. 25 ◽  
Author(s):  
Daniel Ferrández ◽  
Carlos Moron ◽  
Jorge Pablo Díaz ◽  
Pablo Saiz

ResumenEl actual Código Técnico de la Edificación (CTE) pone de manifiesto la necesidad de cubrir parte de la demanda energética requerida para el abastecimiento de agua caliente sanitaria y climatización de piscinas cubiertas mediante sistemas de aprovechamiento de la energía solar térmica. En este artículo se presenta una comparativa entre las dos principales tipologías de captadores solares térmicos que existen en el mercado: el captador de placa plana y el captador de tubo de vacío, atendiendo a criterios de fracción solar, diseño e integración arquitectónica. Todo ello a fin de discernir en qué circunstancias es más favorable el uso de uno u otro sistema, comparando los resultados obtenidos mediante programas de simulación con la toma de medidas in situ.AbstractThe current Technical Building Code (CTE) highlights the need to cover part of the energy demand required for the supply of hot water and heating of indoor swimming pools using solar thermal systems. This article presents a comparison between the two main types of solar thermal collectors that exist in the market: the flat plate solar collector and the vacuum tube solar collector, according to criteria of solar fraction, design and architectural integration. All of this in order to discern in what circumstances the use of one or the other system is more favourable, comparing the results obtained through simulation programs with the taking of measurements in situ.


Sign in / Sign up

Export Citation Format

Share Document