scholarly journals Aplicaciones del Captador Solar de Placa Plana y del Captador de Tubo de Vacío en la Edificación = Applications of the Flat Plate Solar Collectors and the Vacuum Tube Solar Collectors in Building

2018 ◽  
Vol 4 (3) ◽  
pp. 25 ◽  
Author(s):  
Daniel Ferrández ◽  
Carlos Moron ◽  
Jorge Pablo Díaz ◽  
Pablo Saiz

ResumenEl actual Código Técnico de la Edificación (CTE) pone de manifiesto la necesidad de cubrir parte de la demanda energética requerida para el abastecimiento de agua caliente sanitaria y climatización de piscinas cubiertas mediante sistemas de aprovechamiento de la energía solar térmica. En este artículo se presenta una comparativa entre las dos principales tipologías de captadores solares térmicos que existen en el mercado: el captador de placa plana y el captador de tubo de vacío, atendiendo a criterios de fracción solar, diseño e integración arquitectónica. Todo ello a fin de discernir en qué circunstancias es más favorable el uso de uno u otro sistema, comparando los resultados obtenidos mediante programas de simulación con la toma de medidas in situ.AbstractThe current Technical Building Code (CTE) highlights the need to cover part of the energy demand required for the supply of hot water and heating of indoor swimming pools using solar thermal systems. This article presents a comparison between the two main types of solar thermal collectors that exist in the market: the flat plate solar collector and the vacuum tube solar collector, according to criteria of solar fraction, design and architectural integration. All of this in order to discern in what circumstances the use of one or the other system is more favourable, comparing the results obtained through simulation programs with the taking of measurements in situ.

2013 ◽  
Vol 5 (4) ◽  
pp. 404-409 ◽  
Author(s):  
Juozas Bielskus ◽  
Karolis Januševičius ◽  
Vytautas Martinaitis

The article presents simulation based exergy analysis used for comparing solar thermal systems applied for preparing domestic hot water. The simulation of flat and vacuum tube solar collector systems was performed in TRNSYS simulation environment. A period of one year under Lithuanian climate conditions was chosen. Simulation was performed on 6 min time step resolution by calculating energy and exergy flows and creating balance calculation. Assessment results at system and element levels have been presented as monthly variation in efficiency. The conducted analysis has revealed that the systems designed to cover equal heat energy demand operates in different exergetic efficiencies. Article in Lithuanian. Santrauka Straipsnyje eksergijos požiūriu nagrinėjamos dvi saulės kolektorių sistemos, skirtos karštam vandeniui gaminti. Plokščiųjų ir vakuuminių saulės kolektorių modeliavimas atliktas TRNSYS programa. Modeliuota vienerių metų periodui Lietuvos klimatinėmis sąlygomis 6 minučių laiko žingsniu skaičiuojant energijos ir eksergijos srautus kiekvienam laiko žingsniui ir sudarant energinius ir ekserginius balansus. Sistemos ir posistemių efektyvumo rodiklių kitimo rezultatai pateikti grafiškai. Išanalizavus akivaizdu, kad pasirinktomis sąlygomis plokščiųjų ir vakuuminių saulės kolektorių sistemos, turinčios tą pačią funkcinę paskirtį, veikia skirtingu efektyvumu.


2019 ◽  
Vol 97 (10) ◽  
pp. 1115-1124 ◽  
Author(s):  
Khosro Lari ◽  
Ali Tarokh ◽  
Mohammad Naghizadeh

A standard thermal solar collector can be used for both hot water production and air heating purposes. Gas-filled solar collectors represent a new emerging design approach with enhanced characteristics. In this research, numerical modeling is utilized to study radiative effects of the participating gases on the performance of solar collectors. The coupled radiative–convective heat transfer in the solar collector is considered and the collector cavity is considered as a radiatively participating medium. The finite volume method has been adopted to solve the governing equations and discrete ordinates method is used for radiative transfer. After validating the model used in this study, it is used to obtain the heat transfer characteristics of a flat-plate solar collector with real solar conditions of the city of Kerman, Iran, in summer at a wide range of air absorption coefficients. According to the results, by increasing the absorption coefficient of the air, the temperature of the absorber plate is reduced and the air temperature is increased, but the increase of air temperature is much higher than the reduction of absorber temperature. Hence, it is concluded that it is possible to use participating gases in the solar air heaters to enhance the performance of the collector.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1715
Author(s):  
Minjung Lee ◽  
Yunchan Shin ◽  
Honghyun Cho

This study experimentally investigated the performance characteristics of water and MWCNT/Fe3O4 binary nanofluid as a working fluid in a flat plate and vacuum tube solar collectors. As a result, the highest efficiency was 80.3% when 0.005 vol.% MWCNT/0.01 vol.% Fe3O4 binary nanofluid was applied to the flat plate solar collector, which was a 17.6% increase in efficiency, compared to that when water was used. In the case of the vacuum tube solar collector, the highest efficiency was 79.8%, which was 24.9% higher than when water was applied. Besides, when the mass flux of MWCNT/Fe3O4 binary nanofluid was changed from 420 to 598 kg/s·m2, the maximum efficiencies of the flat plate and vacuum tube solar collectors were increased by 7.8% and 8.3%, respectively. When the MWCNT/Fe3O4 binary nanofluid was applied to the vacuum tube solar collector, the efficiency improvement was much more significant, and the high performance could be maintained for wide operating conditions, compared with the flat plate solar collector.


2021 ◽  
Author(s):  
Kamyar Tanha

This thesis is focused on the performance of the two SDHW systems of the sustainable Archetype houses in Vaughan, Ontario with daily hot water consumption of 225 litres. The first system consists of a flat plate solar thermal collector in conjunction with a gas boiler and a DWHR. The second SDHW system consists of an evacuated tube collector, an electric tank and a DWHR. The experimental results showed that the DWHRs were capable of an annual heat recovery of 789 kWh. The flat plate and evacuated tube collectors had an annual thermal energy output of 2038 kWh and 1383 kWh. The systems were also modeled in TRNSYS and validated with the experimental results. The simulated results showed that Edmonton has the highest annual energy consumption of 3763.4 kWh and 2852.9 kWh by gas boiler and electric tank and that the solar thermal collectors and DWHRs are most beneficial in Edmonton.


2017 ◽  
Author(s):  
Carola Sánchez ◽  
José Macías ◽  
Jonathan León ◽  
Geancarlos Zamora ◽  
Guillermo Soriano

Passive solar water heating (SWH) is a convenient method to meet domestic hot water requirements in rural areas, where electricity may not be available or fuel supply might be limited due to difficult access. In this work, a low-cost thermosiphon flat-plate solar collector alternative is presented. The design was purposely limited to materials and recyclable products widely available in the local market, such as Tetra Pak, plastic bottles, and polypropylene (PP) fittings and pipes. Since PP is a thermoplastic polymer, a poor heat conductor, it was necessary to ensure a suitable system isolation to obtain an optimum thermal performance, comparable to commercial solar collectors. The design was built and tested in Guayaquil, Ecuadorian coastal city. Six inexpensive temperature sensors were placed at the entrance and exit of the collector, on the flat-plate and inside the hot water storage tank. Data was recorded using an Arduino single-board computer and later analyzed with the data gathered via weather station. The implementation costs of the system are approximately US$300, the overall performance during January 2017 fluctuated between 54% and 23%, and the storage tank temperature range varied from to 46°C to 33°C. Due to its reliability and affordable cost, the SWH system is an attractive alternative to an Ecuadorian commercial solar flat plate collector, which price is set between US$600 and US$700, it has an efficiency around 60%, and the average annual storage tank temperature is 62°C.


Author(s):  
Mohamed Nabeel A. Negm ◽  
Ahmed A. Abdel-Rehim ◽  
Ahmed A. A. Attia

The world is still dependent on fossil fuels as a continuous and stable energy source, but rising concerns for depletion of these fuels and the steady increase in demand for clean “green” energy have led to the rapid growth of the renewable energy field. As one of the most available energy sources with high energy conversion efficiency, solar energy is the most prominent of these energies as it also has the least effect on the environment. Flat plate collectors are the most common solar collectors, while their efficiency is limited by their absorber’s effectiveness in energy absorption and the transfer of this energy to the working fluid. The efficiency of flat plate solar collectors can be increased by using nanofluids as the working fluid. Nanofluids are a relatively recent development which can greatly enhance the thermophysical properties of working fluids. In the present study, the effect of using Al2O3/Water nanofluid as the working fluid on the efficiency of a thermosyphon flat-plate solar collector was experimentally investigated. The results of this experiment show an increase in efficiency when using nanofluids as the working fluid compared to distilled water. It was found that Al2O3/water nanofluids are a viable enhancement for the efficiency of flat-plate solar collectors.


2021 ◽  
pp. 173-173
Author(s):  
Yedilkhan Amirgaliyev ◽  
Murat Kunelbayev ◽  
Talgat Ormanov ◽  
Talgat Sundetov ◽  
Salauat Daulbayev

The given article considers results of experimental measurements, productivity comparison and master controller executive system of flat-plate solar collector with thermosiphon circulation and flat solar collector with special chemical coating. There has been developed master controllers control module, which receives data from temperature and lighting sensors, obtained in operation process. The aim of the research is getting the solar collectors? optimal parameters, representing maximal usage performance index, controllability, as well as, construction type, allowing energy saving. In the recent years flat-plate solar collectors with chemical coating are characterized with higher efficiency in real conditions usage. The developed master controllers? executive system is used for monitoring the installation?s main parameters, as well, it permits to compare characteristics of solar collector with thermosiphon circulation to those of flat-plate solar collector with chemical coating. The obtained experimental data has shown, that flat solar collectors, using chemical coating as a transfer medium in solar heat supply system, have an advantage in the context of usage effectiveness. The heat output and water heating in a flat solar collector are calculated, which vary depending on the intensity of solar radiation. The thermal efficiency of a flat solar collector with a thermosiphon tank based on the Mojo V3 platform using Dallas sensors is calculated.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2391 ◽  
Author(s):  
Francesco Calise ◽  
Francesco Liberato Cappiello ◽  
Massimo Dentice d’Accadia ◽  
Maria Vicidomini

This work presents a thermoeconomic comparison between two different solar energy technologies, namely the evacuated flat-plate solar collectors and the photovoltaic panels, integrated as auxiliary systems into two renewable polygeneration plants. Both plants produce electricity, heat and cool, and are based on a 6 kWe organic Rankine cycle (ORC), a 17-kW single-stage H2O/LiBr absorption chiller, a geothermal well at 96 °C, a 200 kWt biomass auxiliary heater, a 45.55 kWh lithium-ion battery and a 25 m2 solar field. In both configurations, electric and thermal storage systems are included to mitigate the fluctuations due to the variability of solar radiation. ORC is mainly supplied by the thermal energy produced by the geothermal well. Additional heat is also provided by solar thermal collectors and by a biomass boiler. In an alternative layout, solar thermal collectors are replaced by photovoltaic panels, producing additional electricity with respect to the one produced by the ORC. To reduce ORC condensation temperature and increase the electric efficiency, a ground-cooled condenser is also adopted. All the components included in both plants were accurately simulated in a TRNSYS environment using dynamic models validated versus literature and experimental data. The ORC is modeled by zero-dimensional energy and mass balances written in Engineering Equation Solver and implemented in TRNSYS. The models of both renewable polygeneration plants are applied to a suitable case study, a commercial area near Campi Flegrei (Naples, South Italy), a location well-known for its geothermal sources and good solar availability. The economic results suggest that for this kind of plant, photovoltaic panels show lower pay back periods than evacuated flat-plate solar collectors, 13 years vs 15 years. The adoption of the electric energy storage system leads to an increase of energy-self-sufficiency equal to 42% and 47% for evacuated flat-plate solar collectors and the photovoltaic panels, respectively.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Sarvenaz Sobhansarbandi ◽  
Uğur Atikol

There is a growing interest in using solar energy in underfloor heating systems. However, the large areas required for the installation of solar thermal collector's array can be discouraging, especially in the apartment buildings where the apartment's roof is a common area. The objective of this study is to investigate the possibility of using compound parabolic concentrating (CPC) solar collectors instead of the commonly used flat-plate collectors (FPCs) in such systems. It is aimed to explore the feasibility of area reduction required by the collectors. Second, the temperature profiles of circulating water loop and the concrete slabs are sought to be examined. The system consists of solar thermal collectors, a storage tank, and circulation of water to transport the heat to four similar floor slabs. The CPC collector outlet fluid's temperature can reach a maximum of 95 °C, compared to 70 °C obtained from the FPCs. The results from the simulations show that a 2 m2 CPC collector array can perform satisfactorily to match the job of an 8 m2 FPC array, obtaining the same required circulating water's temperature in the slabs.


Sign in / Sign up

Export Citation Format

Share Document