scholarly journals A linear-time algorithm for finding Hamiltonian cycles in tournaments

1992 ◽  
Vol 36 (2) ◽  
pp. 199-201 ◽  
Author(s):  
Y. Manoussakis
2017 ◽  
Vol 5 (1) ◽  
pp. 44-56
Author(s):  
Hsuan-Han Chang ◽  
Kuan-Ting Chen ◽  
Pao-Lien Lai

The balanced hypercube is a variant of the hypercube structure and has desirable properties like connectivity, regularity, and symmetry. The cycle is a popular interconnection topology and has been widely used in distributed-memory parallel computers. Moreover, parallel algorithms of cycles have been extensively developed and used. The problem of how to embed cycles into a host graph has attracted a great attention in recent years. However, there is no systematic method proposed to generate the desired cycles in balanced hypercubes. In this paper, the authors develop systematic linear time algorithm to construct cycles and Hamiltonian cycles for the balanced hypercube.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Xinyue Liu ◽  
Huiqin Jiang ◽  
Pu Wu ◽  
Zehui Shao

For a simple graph G=(V,E) with no isolated vertices, a total Roman {3}-dominating function(TR3DF) on G is a function f:V(G)→{0,1,2,3} having the property that (i) ∑w∈N(v)f(w)≥3 if f(v)=0; (ii) ∑w∈N(v)f(w)≥2 if f(v)=1; and (iii) every vertex v with f(v)≠0 has a neighbor u with f(u)≠0 for every vertex v∈V(G). The weight of a TR3DF f is the sum f(V)=∑v∈V(G)f(v) and the minimum weight of a total Roman {3}-dominating function on G is called the total Roman {3}-domination number denoted by γt{R3}(G). In this paper, we show that the total Roman {3}-domination problem is NP-complete for planar graphs and chordal bipartite graphs. Finally, we present a linear-time algorithm to compute the value of γt{R3} for trees.


1976 ◽  
Author(s):  
A. K. Jones ◽  
R. J. Lipton ◽  
L. Snyder

2000 ◽  
Vol 11 (03) ◽  
pp. 365-371 ◽  
Author(s):  
LJUBOMIR PERKOVIĆ ◽  
BRUCE REED

We present a modification of Bodlaender's linear time algorithm that, for constant k, determine whether an input graph G has treewidth k and, if so, constructs a tree decomposition of G of width at most k. Our algorithm has the following additional feature: if G has treewidth greater than k then a subgraph G′ of G of treewidth greater than k is returned along with a tree decomposition of G′ of width at most 2k. A consequence is that the fundamental disjoint rooted paths problem can now be solved in O(n2) time. This is the primary motivation of this paper.


2012 ◽  
Vol 160 (3) ◽  
pp. 210-217 ◽  
Author(s):  
Fatemeh Keshavarz-Kohjerdi ◽  
Alireza Bagheri ◽  
Asghar Asgharian-Sardroud

Sign in / Sign up

Export Citation Format

Share Document