The intersection method: A new approach to the inverse kinematics problem

1993 ◽  
Vol 23 (1-2) ◽  
pp. 59-64
Author(s):  
G.P.A Alards ◽  
Th.E Schouten
10.14311/680 ◽  
2005 ◽  
Vol 45 (2) ◽  
Author(s):  
M. Šoch ◽  
R. Lórencz

This paper presents a brief summary of current numerical algorithms for solving the Inverse Kinematics problem. Then a new approach based on the Extended Jacobian technique is compared with the current Jacobian Inversion method. The presented method is intended for use in the field of computer graphics for animation of articulated structures. 


1997 ◽  
Vol 63 (5) ◽  
pp. 699-703
Author(s):  
Xiaohai JIN ◽  
Sachio SHIMIZU ◽  
Nobuyuki FURUYA

2015 ◽  
Vol 109 (6) ◽  
pp. 561-574 ◽  
Author(s):  
Mitra Asadi-Eydivand ◽  
Mohammad Mehdi Ebadzadeh ◽  
Mehran Solati-Hashjin ◽  
Christian Darlot ◽  
Noor Azuan Abu Osman

2012 ◽  
Vol 6 (2) ◽  
Author(s):  
Chin-Hsing Kuo ◽  
Jian S. Dai

A crucial design challenge in minimally invasive surgical (MIS) robots is the provision of a fully decoupled four degrees-of-freedom (4-DOF) remote center-of-motion (RCM) for surgical instruments. In this paper, we present a new parallel manipulator that can generate a 4-DOF RCM over its end-effector and these four DOFs are fully decoupled, i.e., each of them can be independently controlled by one corresponding actuated joint. First, we revisit the remote center-of-motion for MIS robots and introduce a projective displacement representation for coping with this special kinematics. Next, we present the proposed new parallel manipulator structure and study its geometry and motion decouplebility. Accordingly, we solve the inverse kinematics problem by taking the advantage of motion decouplebility. Then, via the screw system approach, we carry out the Jacobian analysis for the manipulator, by which the singular configurations are identified. Finally, we analyze the reachable and collision-free workspaces of the proposed manipulator and conclude the feasibility of this manipulator for the application in minimally invasive surgery.


2013 ◽  
Vol 273 ◽  
pp. 119-123
Author(s):  
Ding Jin Huang ◽  
Teng Liu

The use of traditional analytical method for manipulator inverse kinematics is able to get a display solution with the limitations of the application, only when the robotic arm has a specific structure. In view of the insufficient, this paper presents an improved artificial potential field method to solve the inverse kinematics problem of the manipulator which does not have a special structure. Firstly, establish the standard DH model for the robot arm. Then the strategy that improves search space of artificial potential field method and motion control standard is presented by combining artificial potential field method with the manipulator. Finally, the simulation results show that the proposed method is effective.


2014 ◽  
Author(s):  
Ammar Amouri ◽  
Chawki Mahfoudi ◽  
Abdelouahab Zaatri ◽  
Halim Merabti

Sign in / Sign up

Export Citation Format

Share Document