scholarly journals On spaces in which countably compact sets are closed, and hereditary properties

1980 ◽  
Vol 11 (3) ◽  
pp. 281-292 ◽  
Author(s):  
Mohammad Ismail ◽  
Peter Nyikos
1975 ◽  
Vol 19 (3) ◽  
pp. 221-229 ◽  
Author(s):  
I. Tweddle

The main aim of the present note is to compare C(X) and C(υX), the spaces of real-valued continuous functions on a completely regular space X and its real 1–1 compactification υX, with regard to weak compactness and weak countable compactness. In a sense to be made precise below, it is shown that C(X) and C(υX) have the same absolutely convex weakly countably compact sets. In certain circumstances countable compactness may be replaced by compactness, in which case one obtains a nice representation of the Mackey completion of the dual space of C(X) (Theorems 5, 6, 7).


2017 ◽  
Vol 20 (10) ◽  
pp. 68-73
Author(s):  
O.I. Pavlov

One of the central tasks in the theory of condensations is to describe topological properties that can be improved by condensation (i.e. a continuous one-to-one mapping). Most of the known counterexamples in the field deal with non-hereditary properties. We construct a countably compact linearly ordered (hence, monotonically normal, thus ” very strongly” hereditarily normal) topological space whose square and higher powers cannot be condensed onto a normal space. The constructed space is necessarily pseudocompact in all the powers, which complements a known result on condensations of non-pseudocompact spaces.


1998 ◽  
Vol 63 (4) ◽  
pp. 1442-1472 ◽  
Author(s):  
H. Jerome Keisler

AbstractWe shall prove quantifier elimination theorems for neocompact formulas, which define neocompact sets and are built from atomic formulas using finite disjunctions, infinite conjunctions, existential quantifiers, and bounded universal quantifiers. The neocompact sets were first introduced to provide an easy alternative to nonstandard methods of proving existence theorems in probability theory, where they behave like compact sets. The quantifier elimination theorems in this paper can be applied in a general setting to show that the family of neocompact sets is countably compact. To provide the necessary setting we introduce the notion of a law structure. This notion was motivated by the probability law of a random variable. However, in this paper we discuss a variety of model theoretic examples of the notion in the light of our quantifier elimination results.


Author(s):  
Ehud Hrushovski ◽  
François Loeser

This chapter introduces the concept of stable completion and provides a concrete representation of unit vector Mathematical Double-Struck Capital A superscript n in terms of spaces of semi-lattices, with particular emphasis on the frontier between the definable and the topological categories. It begins by constructing a topological embedding of unit vector Mathematical Double-Struck Capital A superscript n into the inverse limit of a system of spaces of semi-lattices L(Hsubscript d) endowed with the linear topology, where Hsubscript d are finite-dimensional vector spaces. The description is extended to the projective setting. The linear topology is then related to the one induced by the finite level morphism L(Hsubscript d). The chapter also considers the condition that if a definable set in L(Hsubscript d) is an intersection of relatively compact sets, then it is itself relatively compact.


1982 ◽  
Vol 8 (2) ◽  
pp. 455
Author(s):  
Akemann ◽  
Bruckner

1993 ◽  
Vol 36 (4) ◽  
pp. 407-413 ◽  
Author(s):  
Jonathan M. Borwein ◽  
Simon Fitzpatrick

AbstractWe show that L1(μ) has a weak Hadamard differential)le renorm (i.e. differentiable away from the origin uniformly on all weakly compact sets) if and only if μ is sigma finite. As a consequence several powerful recent differentiability theorems apply to subspaces of L1.


2012 ◽  
Vol 263 (4) ◽  
pp. 1098-1102
Author(s):  
Surjit Singh Khurana

Sign in / Sign up

Export Citation Format

Share Document