scholarly journals LINEARLY ORDERED SPACE WHOSE SQUARE AND HIGHER POWERS CANNOT BE CONDENSED ONTO A NORMAL SPACE

2017 ◽  
Vol 20 (10) ◽  
pp. 68-73
Author(s):  
O.I. Pavlov

One of the central tasks in the theory of condensations is to describe topological properties that can be improved by condensation (i.e. a continuous one-to-one mapping). Most of the known counterexamples in the field deal with non-hereditary properties. We construct a countably compact linearly ordered (hence, monotonically normal, thus ” very strongly” hereditarily normal) topological space whose square and higher powers cannot be condensed onto a normal space. The constructed space is necessarily pseudocompact in all the powers, which complements a known result on condensations of non-pseudocompact spaces.

1967 ◽  
Vol 19 ◽  
pp. 474-487 ◽  
Author(s):  
Carlos J. R. Borges

If (X, τ) is a topological space (with topology τ) and A is a subset of X, then the topology τ(A) = {U ⋃ (V ⋂ A)|U, V ∈ τ} is said to be a simple extension of τ. It seems that N. Levine introduced this concept in (4) and he proved, among other results, the following:(A) If (X, τ) is a regular (completely regular) space and A is a closed subset of X, then (X, τ(A)) is a regular (completely regular) space.(B) Let (X, τ) be a normal space, and A a closed subset of X. Then (X, τ(A)) is normal if and only if X — A is a normal subspace of (X, τ).(C) Let (X, τ) be a countably compact (compact or Lindelöf) and A ∉ τ.


2001 ◽  
Vol 27 (8) ◽  
pp. 505-512 ◽  
Author(s):  
José Carlos Rodríguez Alcantud

We extend van Dalen and Wattel's (1973) characterization of orderable spaces and their subspaces by obtaining analogous results for two larger classes of topological spaces. This type of spaces are defined by considering preferences instead of linear orders in the former definitions, and possess topological properties similar to those of (totally) orderable spaces (cf. Alcantud, 1999). Our study provides particular consequences of relevance in mathematical economics; in particular, a condition equivalent to the existence of a continuous preference on a topological space is obtained.


Filomat ◽  
2013 ◽  
Vol 27 (5) ◽  
pp. 875-880
Author(s):  
Yan-Kui Song

A space X is said to be neighborhood star-Lindel?f if for every open cover U of X there exists a countable subset A of X such that for every open O?A, X=St(O,U). In this paper, we continue to investigate the relationship between neighborhood star-Lindel?f spaces and related spaces, and study topological properties of neighborhood star-Lindel?f spaces in the classes of normal and pseudocompact spaces. .


2021 ◽  
Vol 22 (1) ◽  
pp. 1
Author(s):  
Raushan Buzyakova

<p>Given an autohomeomorphism on an ordered topological space or its subspace, we show that it is sometimes possible to introduce a new topology-compatible order on that space so that the same map is monotonic with respect to the new ordering. We note that the existence of such a re-ordering for a given map is equivalent to the map being conjugate (topologically equivalent) to a monotonic map on some homeomorphic ordered space. We observe that the latter cannot always be chosen to be order-isomorphic to the original space. Also, we identify other routes that may lead to similar affirmative statements for other classes of spaces and maps.</p>


2021 ◽  
Vol 48 (2) ◽  
Author(s):  
Mehdi S. Abbas ◽  
◽  
Samer A. Gubeir ◽  

In this paper, we introduce the concept of topological gamma acts as a generalization of Zariski topology. Some topological properties of this topology are studied. Various algebraic properties of topological gamma acts have been discussed. We clarify the interplay between this topological space's properties and the algebraic properties of the gamma acts under consideration. Also, the relation between this topological space and (multiplication, cyclic) gamma act was discussed. We also study some separation axioms and the compactness of this topological space.


2013 ◽  
Vol 1 ◽  
pp. 60-79
Author(s):  
Oleg Gutik ◽  
Kateryna Pavlyk

AbstractIn the paper we investigate topological properties of a topological Brandt λ0-extension B0λ(S) of a semitopological monoid S with zero. In particular we prove that for every Tychonoff pseudocompact (resp., Hausdorff countably compact, Hausdorff compact) semitopological monoid S with zero there exists a unique semiregular pseudocompact (resp., Hausdorff countably compact, Hausdorff compact) extension B0λ(S) of S and establish their Stone-Cˇ ech and Bohr compactifications. We also describe a category whose objects are ingredients in the constructions of pseudocompact (resp., countably compact, sequentially compact, compact) topological Brandt λ0- extensions of pseudocompact (resp., countably compact, sequentially compact, compact) semitopological monoids with zeros.


NUTA Journal ◽  
2020 ◽  
Vol 7 (1-2) ◽  
pp. 68-70
Author(s):  
Raj Narayan Yadav ◽  
Bed Prasad Regmi ◽  
Surendra Raj Pathak

A property of a topological space is termed hereditary ifand only if every subspace of a space with the property also has the property. The purpose of this article is to prove that the topological property of separable space is hereditary. In this paper we determine some topological properties which are hereditary and investigate necessary and sufficient condition functions for sub-spaces to possess properties of sub-spaces which are not in general hereditary.


1962 ◽  
Vol 14 ◽  
pp. 461-466 ◽  
Author(s):  
Isaac Namioka

Let Δn (n > 0) denote the subset of the Euclidean (n + 1)-dimensional space defined byA subset σ of Δn is called a face if there exists a sequence 0 ≤ i1 ≤ i2 ≤ … < im ≤ n such thatand the dimension of σ is defined to be (n — m). Let denote the union of all faces of Δn of dimensions less than n. A topological space Y is called solid if any continuous map on a closed subspace A of a normal space X into Y can be extended to a map on X into Y. By Tietz's extension theorem, each face of Δn is solid. The present paper is concerned with a generalization of the following theorem which seems well known.


1983 ◽  
Vol 26 (4) ◽  
pp. 430-437 ◽  
Author(s):  
Alice M. Dean

AbstractIn [3], Reed establishes a bijection between the (equivalence classes of) principal T1-extensions of a topological space X and the compatible, cluster-generated, Lodato nearnesses on X. We extend Reed's result to the T0 case by obtaining a one-to-one correspondence between the principal T0-extensions of a space X and the collections of sets (called “t-grill sets”) which generate a certain class of nearnesses which we call “t-bunch generated” nearnesses. This correspondence specializes to principal T0-compactifications. Finally, we show that there is a bijection between these t-grill sets and the filter systems of Thron [5], and that the corresponding extensions are equivalent.


Sign in / Sign up

Export Citation Format

Share Document