Multiparameter bifurcation problems and topological degree

1983 ◽  
Vol 8 (1-2) ◽  
pp. 292
2009 ◽  
Vol 19 (09) ◽  
pp. 2965-2977 ◽  
Author(s):  
JACQUES-ELIE FURTER ◽  
ANGELA MARIA SITTA

Parametrized contact-equivalence is a successful theory for the understanding and classification of the qualitative local behavior of bifurcation diagrams and their perturbations. Path formulation is an alternative point of view making explicit the singular behavior due to the core of the bifurcation germ (when the parameters vanish) from the effects of the way parameters enter. We show how to use path formulation to classify and structure efficiently multiparameter bifurcation problems in corank 2 problems. In particular, the nondegenerate umbilics singularities are the generic cores in four situations: the general or gradient problems, with or without ℤ2 symmetry where ℤ2 acts on the second component of ℝ2 via κ(x,y) = (x,-y). The universal unfolding of the umbilic singularities have an interesting "Russian doll" type of structure of miniversal unfoldings in all those categories. With the path formulation approach we can handle one, or more, parameter situations using the same framework. We can even consider some special parameter structure (for instance, some internal hierarchy of parameters). We classify the generic bifurcations with 1, 2 or 3 parameters that occur in those cases. Some results are known with one bifurcation parameter, but the others are new. We discuss some applications to the bifurcation of a loaded cylindrical panel. This problem has many natural parameters that provide concrete examples of our generic diagrams around the first interaction of the buckling modes.


2004 ◽  
Vol 134 (6) ◽  
pp. 1115-1126 ◽  
Author(s):  
Jacques-Elie Furter ◽  
Angela Maria Sitta

Path formulation can be used to classify and structure efficiently multiparameter bifurcation problems around fundamental singularities: the cores. The non-degenerate umbilic singularities are the generic cores for four situations in corank 2: the general or gradient problems and the Z2-equivariant (general or gradient) problems. Those categories determine an interesting ‘Russian doll’ type of structure in the universal unfoldings of the umbilic singularities.One advantage of our approach is that we can handle one, two or more parameters using the same framework (even considering some special parameter structure, for instance, some internal hierarchy). We classify the generic bifurcations that occur in those cases with one or two parameters.


2020 ◽  
Vol 30 (09) ◽  
pp. 2050140
Author(s):  
Jacques-Elie Furter

A singularity theory, in the form of path formulation, is developed to analyze and organize the qualitative behavior of multiparameter [Formula: see text]-equivariant bifurcation problems of corank 2 and their deformations when the trivial solution is preserved as parameters vary. Path formulation allows for an efficient discussion of different parameter structures with a minimal modification of the algebra between cases. We give a partial classification of one-parameter problems. With a couple of parameter hierarchies, we show that the generic bifurcation problems are 2-determined and of topological codimension-0. We also show that the preservation of the trivial solutions is an important hypotheses for multiparameter bifurcation problems. We apply our results to the bifurcation of a cylindrical panel under axial compression.


2001 ◽  
Vol 25 (4) ◽  
pp. 273-287 ◽  
Author(s):  
A. Addou ◽  
B. Mermri

We are interested in constructing a topological degree for operators of the formF=L+A+S, whereLis a linear densely defined maximal monotone map,Ais a bounded maximal monotone operators, andSis a bounded demicontinuous map of class(S+)with respect to the domain ofL. By means of this topological degree we prove an existence result that will be applied to give a new formulation of a parabolic variational inequality problem.


Sign in / Sign up

Export Citation Format

Share Document