buckling modes
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 54)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Hamid Hasanzadeh ◽  
Ehsan Mohtarami ◽  
Mohammad Ebadati ◽  
Kazem Reza Kashyzadeh ◽  
Mostafa Omidi Bidgoli

The current research is conducted to investigate the experimental and numerical study of crushing behavior and buckling modes of thin-walled truncated conical shells with or without cutouts and discontinuities under axial loading. In this regard, Instron 8802 servohydraulic machine is used to perform the experiments. Additionally, the buckling modes, derived from the axial collapse phenomenon, are simulated with Finite Element (FE) software. The force-displacement diagrams extracted numerically are compared with experimental results. Various factors, including maximum force, energy absorption, specific energy, and failure modes of each case, are also discussed. The results indicate that the increasing cutout cause a decrease in the maximum force and energy absorption. Moreover, with cutouts reduction, the failure modes of the samples changed from the diamond asymmetric mode and single-lobe mode to multi-lobes, and with removing cutouts, the failure mode is observed to be completely symmetric.


Author(s):  
Changliang Lai ◽  
Qianqian Sui ◽  
Hualin Fan

To develop large-span but ultralight lattice truss columns, a hierarchical IsoTruss column (HITC) was proposed. The multi-buckling behavior of the axially compressed HITC was analyzed by the finite element method (FEM) using a parametric approach in the framework of ANSYS parametric design language (APDL). It was demonstrated that the program enables efficient generation of the finite element (FE) model, while facilitating the parametric design of the HITC. Using this program, the effects of helical angles and brace angles on the buckling behavior of the HITC were investigated. Depending on the helical angles and brace angles, the HITCs mainly have three buckling modes: the global buckling, the first-order local buckling and the second-order local buckling. Theoretical multi-buckling models were established to predict the critical buckling loads. Buckling failure maps based on the theoretical analyses were also developed, which can be useful in preliminary design of such structures.


Author(s):  
Licai Yang ◽  
Yuguang Li ◽  
Tian Qiu ◽  
Yuanyuan Dong ◽  
Shanglin Zhang

Abstract This paper proposes an analytical buckling load formula for a cylindrical shell subjected to local axial compression for the first time, which is achieved by a carefully constructed load description and perturbation procedure. Local axial load is described by introducing an arctangent function firstly. Then, the analytical solutions of local buckling load coefficients and buckling modes for a locally compressed shell are derived after solving governing differential equations by the perturbation method. For validation, using the presented analytical buckling modes, the Galerkin method is applied to obtain numerical result, which is an infinite order determinant about local buckling load coefficient. Comparative calculation results show that local buckling load coefficients by the analytical formula are in perfect agreement with numerical ones by the Galerkin method and known results in literature. Therefore, the validity and accuracy of the presented formula are verified. Engineering application of the analytical formula is also discussed to evaluate local buckling loads of thin-walled cylindrical shell structures such as silos, pressure vessels, large storage tanks and so on.


Author(s):  
Anna Dalklint ◽  
Mathias Wallin ◽  
Daniel A. Tortorelli

AbstractThis paper demonstrates how a strain energy transition approach can be used to remove artificial buckling modes that often occur in stability constrained topology optimization problems. To simulate the structural response, a nonlinear large deformation hyperelastic simulation is performed, wherein the fundamental load path is traversed using Newton’s method and the critical buckling load levels are estimated by an eigenvalue analysis. The goal of the optimization is to minimize displacement, subject to constraints on the lowest critical buckling loads and maximum volume. The topology optimization problem is regularized via the Helmholtz PDE-filter and the method of moving asymptotes is used to update the design. The stability and sensitivity analyses are outlined in detail. The effectiveness of the energy transition scheme is demonstrated in numerical examples.


2021 ◽  
Author(s):  
Lior Medina ◽  
Ashwin A. Seshia

Abstract A limit point behaviour analysis of a metastructure, composed of two double clamped, initially curved beams, coupled via a rigid truss at their respective centres, is carried out when subjected to a distributed electrostatic load. The analysis is based on a reduced order (RO) model resulting from Galerkin’s decomposition, with symmetric buckling modes taken as the base functions, for either beam. All solutions employed the implicit arc-length “Riks” method to accommodate for winding equilibrium paths, while validation of the said results were carried out against finite differences (FD) direct solutions. In addition, local stability analysis via the energy method, conducted on the primary beam was instrumental in clarifying the role of the various extremum points by characterising which branches are stable, and which are not. The combined analysis has shown that the driving beam, which directly encounters the load, is able to possess bistable as well as tristable properties, provided that the metastructure meets certain geometrical parameters. Several variations of tristability are disclosed in the study. The analysis indicates that a model with at least three degrees of freedom (DOF) is needed to predict such configurations, as well as the various critical thresholds, with reasonable errors of around one percent when compared against FD. In so doing, the model can be used to provide static characterisation of the structure.


2021 ◽  
Author(s):  
Lior Medina ◽  
Rami Eliasi ◽  
Rivka Gilat ◽  
Slava Krylov

Abstract The effect of membrane load on the behaviour of axisymmetric bistable circular curved microplates on Berger’s based axisymmetric reduced order (RO) model, incorporating radial prestress, is studied. The model is first validated for a “mechanical” load, against a Föppl-von-Kármán’s RO model with twenty degrees of freedom (DOF), a finite differences (FD) solution and a finite elements (FE) model, serving as the reference. All solutions implement the “Riks” method to track possible unstable branches, which can swerve in due to the presence of higher buckling modes. A convergence study is carried out for the snap-through location and load, as well as for the critical elevation and prestress required for bistability. Based on validated results of the analysis, the reliability of the model for predicting the effect of prestress on the plate behaviour under nonlinear electrostatic load is then investigated while using FD solutions as the reference. The study furnishes a reliable expended RO model, which includes prestress on the as-fabricated curved plate. The resulting model can further be used to estimate the value of residual prestress, present in an electrostatically actuated curved plate, based on its response.


Author(s):  
Thasan Selvakumar ◽  
Rajendran Senthil ◽  
Rajan Raj Jawahar ◽  
Soundararajan Lakshmana kumar

This work was carried out on the buckling effects of cold-formed perforated steel columns with base auxetic polymer stiffeners. Buckling tests were carried out for three thicknesses of steel profiles (1.5–1.8 mm) with and without base stiffeners. Loading conditions were considered to be with displacement variation of 0.1 mm/s and respective axial loads and lateral displacements were noted. Results obtained states that the lateral displacement was found to be 2.2 for 1.8 mm CFS thickness and 93 kN of axial load with the use of auxetic stiffener with 14.8% of the variation in comparison without stiffener. The strain energy of absorption for auxetic stiffener is found to be high as 0.0523 at a lateral load of 80 kN for 1.8 mm CFS thickness. The maximum resistance to local, distortional, and Euler’s buckling loads was found to be high for 1.8 mm thick CFS with stiffener with 11.1%, 17.39%, and 10% in comparison without stiffener.


Author(s):  
Xiaolan Xu ◽  
Dongdong Wang ◽  
Xiwei Li ◽  
Songyang Hou ◽  
Jianguo Zhang

A superconvergent isogeometric method is developed for the buckling analysis of thin beams and plates, in which the quadratic basis functions are particularly considered. This method is formulated through refining the quadrature rules used for the numerical integration of geometric and material stiffness matrices. The criterion for the quadrature refinement is the optimization of the buckling load accuracy under the assumption of harmonic buckling modes for thin beams and plates. The method development starts with the thin beam buckling analysis, where the material stiffness matrix with quadratic basis functions does not involve numerical integration and thus the refined quadrature rule for geometric stiffness matrix can be obtained in a relatively easy way. Subsequently, this refined quadrature rule for thin beam geometric stiffness matrix is conveniently generalized to the thin plate geometric stiffness matrix via the tensor product operation. Meanwhile, the refined quadrature rule for the thin plate material stiffness matrix is derived by minimizing the buckling load error. It turns out that the refined quadrature rule for the thin plate material stiffness matrix generally depends on the wave numbers of buckling modes. A theoretical error analysis for the buckling loads evinces that the isogeometric method with refined quadrature rules offers a fourth-order accurate superconvergent algorithm for buckling load computation, which is two orders higher than the standard isogeometric analysis approach. Numerical results well demonstrate the superconvergence of the proposed method for the buckling loads corresponding to harmonic buckling modes, and for those related with non-harmonic modes, the buckling loads given by the proposed method are also much more accurate than their counterparts produced by the conventional isogeometric analysis.


Sign in / Sign up

Export Citation Format

Share Document