Effects of cholera toxin on cyclic AMP accumulation and bone resorption in cultured mouse calvaria

1987 ◽  
Vol 930 (3) ◽  
pp. 378-391 ◽  
Author(s):  
Maria Ransjö ◽  
Ulf H. Lerner
1994 ◽  
Vol 297 (1) ◽  
pp. 233-239 ◽  
Author(s):  
P A Stevens ◽  
S Pyne ◽  
M Grady ◽  
N J Pyne

Treatment of cultured tracheal smooth-muscle cells (TSM) with phorbol 12-myristate 13-acetate (PMA) (100 nM) or bradykinin (100 nM) elicited enhanced basal and guanosine 5′-[beta gamma-imido]-triphosphate-stimulated adenylate cyclase activities in subsequently isolated membranes. Combined stimulation of cells was non-additive, indicating that both agents activate adenylate cyclase via similar routes. Both PMA (100 nM) and bradykinin (100 nM) allowed the alpha subunit of Gs to act as a more favourable substrate for its cholera-toxin-catalysed ADP-ribosylation in vitro. PMA was without effect on intracellular cyclic AMP in control cells. However, constitutive activation of Gs by treatment in vivo with cholera toxin (0.5 ng/ml, 18 h) sensitized the cells to PMA stimulation, resulting in a concentration-dependent increase in intracellular cyclic AMP accumulation (EC50 = 7.3 +/- 2.5 nM, n = 5). Bradykinin also elicited a concentration-dependent increase in intracellular cyclic AMP (EC50 = 63.3 +/- 14.5 nM, n = 3). Constitutive activation of Gs resulted in an increased maximal response (10-fold) and potency (EC50 = 6.17 +/- 1.6 nM, n = 3) to bradykinin. This response was not affected by the B2-receptor antagonist, NPC567 [which selectively blocks bradykinin-stimulated phospholipase C (PLC), with minor activity against phospholipase D (PLD) activity]. Des-Arg9-bradykinin (a B1-receptor agonist) was without activity. These results suggest that the receptor sub-type capable of activating PLD may also be stimulatory for cyclic AMP accumulation. Furthermore, pre-treatment of the cells with butan-l-ol (0.3%, v/v), which traps phosphatidate derived from PLD reactions, blocked the bradykinin-stimulated increase in intracellular cyclic AMP. These studies suggest that there may be a causal link between PLD-derived phosphatidate and the positive modulation of adenylate cyclase activity. In support of this, the concentration-dependence for bradykinin-stimulated adenylate cyclase activity was identical with that of bradykinin-stimulated phospholipase D activity (EC50 = 5 nM). Bradykinin, but not PMA, was also capable of eliciting the inhibition of cyclic AMP phosphodiesterase activity in TSM cells (EC50 > 100 nM) via an unidentified mechanism. These studies indicate that cross-regulation between the cyclic AMP pathway and phospholipid-derived second messengers in TSM cells does not occur as a consequence of PLC-catalysed PtdIns(4,5)P2 hydrolysis, but may involve, in part, PLD-catalysed phosphatidylcholine hydrolysis.


1989 ◽  
Vol 143 (1) ◽  
pp. 165-175
Author(s):  
F. P. Lafeber ◽  
M. P. Herrmann-Erlee ◽  
G. Flik ◽  
S. E. Wendelaar Bonga

Hypocalcin, the major hormone with hypocalcaemic action in fish, was isolated from trout corpuscles of Stannius (SCs). The bioactivity of hypocalcin was assessed in a parathyroid hormone (PTH) bioassay involving bone resorption in embryonic mouse calvaria. Calcium and phosphate release and lactate production were stimulated in a dose-dependent manner by hypocalcin. On a molar basis about equal amounts of hypocalcin and PTH were required to obtain similar effects in this assay. Hypocalcin did not stimulate cyclic AMP production either in mouse calvaria or in cultured osteoblasts. In this respect hypocalcin resembles shortened or N-terminus-modified PTH molecules that induce bone resorption without increasing cyclic AMP levels. Since hypocalcin and PTH have comparable bioactivity in this mammalian bioassay (as well as in fish bioassays), we tentatively suggest that both hormones are structurally similar and that both hormones may act via the same receptors. The two hormones show no resemblance to one another in primary structure, so we suggest that they have similarities in tertiary structure.


1986 ◽  
Vol 240 (2) ◽  
pp. 529-539 ◽  
Author(s):  
U H Lerner ◽  
B B Fredholm ◽  
M Ransjö

The effect of the adenylate cyclase activator forskolin on bone resorption and cyclic AMP accumulation was studied in an organ-culture system by using calvarial bones from 6-7-day-old mice. Forskolin caused a rapid and fully reversible increase of cyclic AMP, which was maximal after 20-30 min. The phosphodiesterase inhibitor rolipram (30 mumol/l), enhanced the cyclic AMP response to forskolin (50 mumol/l) from a net cyclic AMP response of 1234 +/- 154 pmol/bone to 2854 +/- 193 pmol/bone (mean +/- S.E.M., n = 4). The cyclic AMP level in bones treated with forskolin (30 mumol/l) was significantly increased after 24 h of culture. Forskolin, at and above 0.3 mumol/l, in the absence and the presence of rolipram (30 mumol/l), caused a dose-dependent cyclic AMP accumulation with an calculated EC50 (concentration producing half-maximal stimulation) value at 8.3 mumol/l. In 24 h cultures forskolin inhibited spontaneous and PTH (parathyroid hormone)-stimulated 45Ca release with calculated IC50 (concentration producing half-maximal inhibition) values at 1.6 and 0.6 mumol/l respectively. Forskolin significantly inhibited the release of 3H from [3H]proline-labelled bones stimulated by PTH (10 nmol/l). The inhibitory effect by forskolin on PTH-stimulated 45Ca release was significant already after 3 h of culture. In 24 h cultures forskolin (3 mumol/l) significantly inhibited 45Ca release also from bones stimulated by prostaglandin E2 (1 mumol/l) and 1 alpha-hydroxycholecalciferol (0.1 mumol/l). The inhibitory effect of forskolin on spontaneous and PTH-stimulated 45Ca release was transient. A dose-dependent stimulation of basal 45Ca release was seen in 120 h cultures, at and above 3 nmol of forskolin/l, with a calculated EC50 value at 16 nmol/l. The stimulatory effect of forskolin (1 mumol/l) could be inhibited by calcitonin (0.1 unit/ml), but was insensitive to indomethacin (1 mumol/l). Forskolin increased the release of 3H from [3H]proline-labelled bones cultured for 120 h and decreased the amount of hydroxyproline in bones after culture. Forskolin inhibited PTH-stimulated release of Ca2+, Pi, beta-glucuronidase and beta-N-acetylglucosaminidase in 24 h cultures. In 120 h cultures forskolin stimulated the basal release of minerals and lysosomal enzymes.(ABSTRACT TRUNCATED AT 400 WORDS)


1982 ◽  
Vol 100 (2) ◽  
pp. 313-320 ◽  
Author(s):  
Ulf Lerner ◽  
Bertil B. Fredholm

Abstract. The effect of 2-chloroadenosine on bone resorption and on cyclic AMP formation in murine calvarial bones in vitro was investigated. 2-Chloroadenosine increased the release of 45Ca from the cultured bones, but had no effect on dead bones, indicating that the effect is cell mediated. The adenosine analogue remained in the medium for 48 h and caused a transient stimulation of the formation of cyclic AMP. The dose-response curve for the stimulatory effect on cyclic AMP accumulation was linear up to 10−4m. The dose-response curve for 45Ca release was linear from 3 × 10−7 m to 3 × 10−5 m but then showed a decline in the response. 8-Bromo cyclic AMP inhibited the release of 45Ca in 24 h cultures. The initial stimulatory effect on bone resorption by 2-chloroadenosine may therefore not depend on cyclic AMP. The level of inosine increased during culture indicating that adenosine is formed by bone tissue.


Sign in / Sign up

Export Citation Format

Share Document