lactate production
Recently Published Documents





2022 ◽  
Vol 8 ◽  
Weilan Wang ◽  
Jodi E. Nettleton ◽  
Michael G. Gänzle ◽  
Raylene A. Reimer

To identify possible mechanisms by which maternal consumption of non-nutritive sweeteners increases obesity risk in offspring, we reconstructed the major alterations in the cecal microbiome of 3-week-old offspring of obese dams consuming high fat/sucrose (HFS) diet with or without aspartame (5–7 mg/kg/day) or stevia (2–3 mg/kg/day) by shotgun metagenomic sequencing (n = 36). High throughput 16S rRNA gene sequencing (n = 105) was performed for dams, 3- and 18-week-old offspring. Maternal consumption of sweeteners altered cecal microbial composition and metabolism of propionate/lactate in their offspring. Offspring daily body weight gain, liver weight and body fat were positively correlated to the relative abundance of key microbes and enzymes involved in succinate/propionate production while negatively correlated to that of lactose degradation and lactate production. The altered propionate/lactate production in the cecum of weanlings from aspartame and stevia consuming dams implicates an altered ratio of dietary carbohydrate digestion, mainly lactose, in the small intestine vs. microbial fermentation in the large intestine. The reconstructed microbiome alterations could explain increased offspring body weight and body fat. This study demonstrates that intense sweet tastants have a lasting and intergenerational effect on gut microbiota, microbial metabolites and host health.

2022 ◽  
Jingyu Chen ◽  
Zizhen Zhang ◽  
Jiaojiao Ni ◽  
Jiawei Sun ◽  
Fangyu Ju ◽  

Abstract Background Colorectal cancer (CRC) is among the leading cause of cancer-related morbidity and mortality worldwide. Aerobic glycolysis, as a metabolic hallmark of cancer, plays an important role in CRC progression. Enolase 3 (ENO3) is a glycolytic enzyme that catalyzes 2-phosphoglycerate into phosphoenolpyruvate, while its role in CRC is still unknown. Methods Bioinformatics analysis was performed to examine the expression changes and roles of ENO3 in CRC patients from public databases. Then, ENO3 expression was validated in CRC tissues using Quantitative real-time PCR (qRT-PCR), immunohistochemical (IHC) analysis, and western blot. Overexpression and silencing models were constructed using plasmid and lentivirus transfection. Cell viability, proliferation, and migration in vitro were applied to evaluate the protumoral effects of ENO3 on CRC. RNA sequencing and GO enrichment analysis of differentially expressed genes (DEGs) were performed to explore the underlying molecular mechanisms of ENO3 in CRC progression. The ATP and lactate production level were detected to assess cell glycolysis.

2022 ◽  
Vol 2022 ◽  
pp. 1-14
Mengyuan Chen ◽  
Maozhu Liu ◽  
Ying Luo ◽  
Jun Cao ◽  
Fanning Zeng ◽  

Cerebral ischemia/reperfusion (I/R) injury is closely related to dysfunctional glucose metabolism. Celastrol is a bioactive compound that has been found to exhibit neuroprotective effects in cerebral ischemia, while whether it can protect against cerebral I/R injury by regulating glycolysis remains unclear. The goal of this study is to investigate the role of celastrol on cerebral I/R injury and its underlying mechanisms in transient middle cerebral artery occlusion (tMCAO) mice. Methods. To observe the protective effect of celastrol and select its optimal dosage for further study, neurological score, TTC staining, and HE staining were used to evaluate neurological function, cerebral infarct volume, and cortical cell damage, respectively. QRT-PCR and Western blot were used to detect the mRNA and protein expression of hypoxia inducible factor-1α (HIF-1α), pyruvate dehydrogenasekinase1 (PDK1), lactate dehydrogenase A (LDHA), glucose transporter1 (GLUT1), and hexokinase2 (HK2), respectively. The lactate production, ATP level, and glucose content were assessed by assay kits. Results. Our results indicated that celastrol dose-dependently improved neurological function and reduced cerebral infarct volume and cortical cell death of tMCAO mice, and its optimal dosage was 4.5 mg/kg. In addition, celastrol significantly blocked I/R-induced increase of LDHA, GLUT1, HK2, and lactate production as well as decrease of ATP level and glucose content. Moreover, celastrol inhibited the I/R-induced upregulation of HIF-1α and PDK1. Overexpression of HIF-1α by DMOG reversed the protective effect of celastrol on cerebral I/R injury and blocked celastrol-induced suppression of glycolysis. Conclusions. Taken together, these results suggested that celastrol protected against cerebral I/R injury through inhibiting glycolysis via the HIF-1α/PDK1 axis.

Amanda K. Jones ◽  
Dong Wang ◽  
David Goldstrohm ◽  
Laura D Brown ◽  
Paul J. Rozance ◽  

Fetal hypoxemia decreases insulin and increases cortisol and norepinephrine concentrations and may restrict growth by decreasing glucose utilization and altering substrate oxidation. Specifically, we hypothesized that hypoxemia would decrease fetal glucose oxidation and increase lactate and pyruvate production. We tested this by measuring whole-body glucose oxidation and lactate production, and molecular pathways in liver, muscle, adipose, and pancreas tissues of fetuses exposed to maternal hypoxemia for 9 days (HOX) compared with control fetal sheep (CON) in late gestation. Fetuses with more severe hypoxemia had lower whole-body glucose oxidation rates, and HOX fetuses had increased lactate production from glucose. In muscle and adipose tissue, expression of the glucose transporter GLUT4 was decreased. In muscle, pyruvate kinase (PKM) and lactate dehydrogenase B (LDHB) expression was decreased. In adipose tissue, LDHA and lactate transporter (MCT1) expression was increased. In liver, there was decreased gene expression of PKLR and MPC2 and phosphorylation of PDH, and increased LDHA gene and protein abundance. LDH activity, however, was decreased only in HOX skeletal muscle. There were no differences in basal insulin signaling across tissues, nor differences in pancreatic tissue insulin content, beta cell area, or genes regulating beta cell function. Collectively, these results demonstrate coordinated metabolic responses across tissues in the hypoxemic fetus that limit glucose oxidation and increase lactate and pyruvate production. These responses may be mediated by hypoxemia induced endocrine responses including increased norepinephrine and cortisol, which inhibit pancreatic insulin secretion resulting in lower insulin concentrations and decreased stimulation of glucose utilization.

2021 ◽  
Vol 8 ◽  
Kimberly M Stanke ◽  
Carrick Wilson ◽  
Srivatsan Kidambi

Glioblastoma (GBM), the most aggressive brain tumor, is associated with a median survival at diagnosis of 16–20 months and limited treatment options. The key hallmark of GBM is altered tumor metabolism and marked increase in the rate of glycolysis. Aerobic glycolysis along with elevated glucose consumption and lactate production supports rapid cell proliferation and GBM growth. In this study, we examined the gene expression profile of metabolic targets in GBM samples from patients with lower grade glioma (LGG) and GBM. We found that gene expression of glycolytic enzymes is up-regulated in GBM samples and significantly associated with an elevated risk for developing GBM. Our findings of clinical outcomes showed that GBM patients with high expression of HK2 and PKM2 in the glycolysis related genes and low expression of genes involved in mitochondrial metabolism-SDHB and COX5A related to tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS), respectively, was associated with poor patient overall survival. Surprisingly, expression levels of genes involved in mitochondrial oxidative metabolism are markedly increased in GBM compared to LGG but was lower compared to normal brain. The fact that in GBM the expression levels of TCA cycle and OXPHOS-related genes are higher than those in LGG patients suggests the metabolic shift in GBM cells when progressing from LGG to GBM. These results are an important step forward in our understanding of the role of metabolic reprogramming in glioma as drivers of the tumor and could be potential prognostic targets in GBM therapies.

2021 ◽  
Vol 23 (1) ◽  
pp. 129
Huinan Qu ◽  
Da Qi ◽  
Xinqi Wang ◽  
Yuan Dong ◽  
Qiu Jin ◽  

Claudin 6 (CLDN6) was found to be a breast cancer suppressor gene, which is lowly expressed in breast cancer and inhibits breast cancer cell proliferation upon overexpression. However, the mechanism by which CLDN6 inhibits breast cancer proliferation is unclear. Here, we investigated this issue and elucidated the molecular mechanisms by which CLDN6 inhibits breast cancer proliferation. First, we verified that CLDN6 was lowly expressed in breast cancer tissues and that patients with lower CLDN6 expression had a worse prognosis. Next, we confirmed that CLDN6 inhibited breast cancer proliferation through in vitro and in vivo experiments. As for the mechanism, we found that CLDN6 inhibited c–MYC–mediated aerobic glycolysis based on a metabolomic analysis of CLDN6 affecting cellular lactate levels. CLDN6 interacted with a transcriptional co–activator with PDZ-binding motif (TAZ) and reduced the level of TAZ, thereby suppressing c–MYC transcription, which led to a reduction in glucose uptake and lactate production. Considered together, our results suggested that CLDN6 suppressed c–MYC–mediated aerobic glycolysis to inhibit the proliferation of breast cancer by TAZ, which indicated that CLDN6 acted as a novel regulator of aerobic glycolysis and provided a theoretical basis for CLDN6 as a biomarker of progression in breast cancer.

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261191
Janneke Elzinga ◽  
Benthe van der Lugt ◽  
Clara Belzer ◽  
Wilma T. Steegenga

The intestinal mucus layer plays a crucial role in human health. To study intestinal mucus function and structure in vitro, the mucus-producing intestinal cell line HT29-MTX-E12 has been commonly used. However, this cell line produces only low amounts of the intestine-specific MUC2. It has been shown previously that HT29-MTX-E12 cells cultured under Semi-Wet interface with Mechanical Stimulation (SWMS) produced higher amounts of MUC2, concomitant with a thicker mucus layer, compared to cells cultured conventionally. However, it remains unknown which underlying pathways are involved. Therefore, we aimed to further explore the cellular processes underlying the increased MUC2 production by HT29-MTX-E12 cells grown under SWMS conditions. Cells grown on Transwell membranes for 14 days under static and SWMS conditions (after cell seeding and attachment) were subjected to transcriptome analysis to investigate underlying molecular pathways at gene expression level. Caco-2 and LS174T cell lines were included as references. We characterized how SWMS conditions affected HT29-MTX-E12 cells in terms of epithelial barrier integrity, by measuring transepithelial electrical resistance, and cell metabolism, by monitoring pH and lactate production per molecule glucose of the conditioned medium. We confirmed higher MUC2 production under SWMS conditions at gene and protein level and demonstrated that this culturing method primarily stimulated cell growth. In addition, we also found evidence for a more aerobic cell metabolism under SWMS, as shown previously for similar models. In summary, we suggest different mechanisms by which MUC2 production is enhanced under SWMS and propose potential applications of this model in future studies.

2021 ◽  
Andreia P Alves ◽  
Sandra M Rocha ◽  
Ana C Mamede ◽  
Marco G Alves ◽  
Pedro F Oliveira ◽  

Abstract Background: The human Amniotic Membrane (hAM) has been studied as a potential therapeutic option in cancer, namely in hepatocellular carcinoma. Previously, our research group evaluated the effect of human Amniotic Membrane Protein Extracts (hAMPE) in cancer therapy, demonstrating that hAMPE inhibit the metabolic activity of human hepatocellular carcinoma cell lines: Hep3B2.1-7, HepG2 and Huh7. Therefore, the aim of this study was to evaluate the effect of hAMPE treatment in glucose metabolism of hepatocellular carcinoma. Methods and Results: Glucose uptake and lactate production was assessed by 1H-NMR, and the expression of several mediators of the glycolytic pathway was evaluated by Western blot or fluorescence. Our results showed that hAMPE treatment increased glucose consumption on Hep3B2.1-7, HepG2, and Huh7 through the increase of GLUT1 in Hep3B2.1-7 and Huh7, and GLUT3 in HepG2 cells. It was observed increased expression of 6-phosphofrutokinase (PFK-1L) in all cell lines, indicating that glucose can be converted to pyruvate. Also, it was verified that glucose seems not to be converted to lactate on HepG2 and Huh7 cells, suggesting that hAMPE treatment may contradict the Warburg effect observed in carcinogenesis. In Hep3B2.1-7, the hAMPE treatment induced an increase in expression of lactate dehydrogenase (LDH) and monocarboxylate transporter isoform 4 (MCT4). Conclusions: Overall, this work highlighted the potential usefulness of hAMPE as anticancer therapy through the modulation of the glycolytic metabolism in human hepatocellular carcinoma.

2021 ◽  
Vol 12 ◽  
Philip J. Prins ◽  
Jeffrey D. Buxton ◽  
Tyler S. McClure ◽  
Dominic P. D’Agostino ◽  
Dana L. Ault ◽  

Exogenous ketone esters have demonstrated the capacity to increase oxygen availability during acute hypoxic exposure leading to the potential application of their use to mitigate performance declines at high altitudes. Voluntary hypoventilation (VH) with exercise reliably reduces oxygen availability and increases carbon dioxide retention without alterations to ambient pressure or gas content. Utilizing a double-blind randomized crossover design, fifteen recreational male distance runners performed submaximal exercise (4 × 5 min; 70% VO2 Max) with VH. An exogenous ketone ester (KME; 573 mg⋅kg–1) or iso-caloric flavor matched placebo (PLA) was consumed prior to exercise. Metabolites, blood gases, expired air, heart rate, oxygen saturation, cognition, and perception metrics were collected throughout. KME rapidly elevated R-β-hydroxybutyrate and reduced blood glucose without altering lactate production. KME lowered pH, bicarbonate, and total carbon dioxide. VH with exercise significantly reduced blood (SpO2) and muscle (SmO2) oxygenation and increased cognitive mean reaction time and respiratory rate regardless of condition. KME administration significantly elevated respiratory exchange ratio (RER) at rest and throughout recovery from VH, compared to PLA. Blood carbon dioxide (PCO2) retention increased in the PLA condition while decreasing in the KME condition, leading to a significantly lower PCO2 value immediately post VH exercise (IPE; p = 0.031) and at recovery (p = 0.001), independent of respiratory rate. The KME’s ability to rapidly alter metabolism, acid/base balance, CO2 retention, and respiratory exchange rate independent of respiratory rate changes at rest, during, and/or following VH exercise protocol illustrates a rapid countermeasure to CO2 retention in concert with systemic metabolic changes.

Sign in / Sign up

Export Citation Format

Share Document