Parallel recombinative simulated annealing: A genetic algorithm

1995 ◽  
Vol 21 (1) ◽  
pp. 1-28 ◽  
Author(s):  
Samir W. Mahfoud ◽  
David E. Goldberg
2013 ◽  
Vol 651 ◽  
pp. 548-552
Author(s):  
Parinya Kaweegitbundit

This paper considers two stage hybrid flow shop (HFS) with identical parallel machine. The objectives is to determine makespan have been minimized. This paper presented memetic algorithm procedure to solve two stage HFS problems. To evaluated performance of propose method, the results have been compared with two meta-heuristic, genetic algorithm, simulated annealing. The experimental results show that propose method is more effective and efficient than genetic algorithm and simulated annealing to solve two stage HFS scheduling problems.


2015 ◽  
Vol 785 ◽  
pp. 14-18 ◽  
Author(s):  
Badar ul Islam ◽  
Zuhairi Baharudin ◽  
Perumal Nallagownden

Although, Back Propagation Neural Network are frequently implemented to forecast short-term electricity load, however, this training algorithm is criticized for its slow and improper convergence and poor generalization. There is a great need to explore the techniques that can overcome the above mentioned limitations to improve the forecast accuracy. In this paper, an improved BP neural network training algorithm is proposed that hybridizes simulated annealing and genetic algorithm (SA-GA). This hybrid approach leads to the integration of powerful local search capability of simulated annealing and near accurate global search performance of genetic algorithm. The proposed technique has shown better results in terms of load forecast accuracy and faster convergence. ISO New England data for the period of five years is employed to develop a case study that validates the efficacy of the proposed technique.


Sign in / Sign up

Export Citation Format

Share Document