An improved experimental method for the determination of the critical stress intensity factor KIc of brittle materials

1987 ◽  
Vol 8 (1) ◽  
pp. 41-48
Author(s):  
J.N. Prassianakis
2017 ◽  
Vol 909 ◽  
pp. 133-142
Author(s):  
Teng Hui Chen

Sharp V-notches with various angles often appear in engineering structures. When being loaded, the high stress at the apex could result in crack propagation on the structure and further fracture. For this reason, safety evaluation should be emphasized for products or engineering structures with such geometric characteristics. Sharp V-notches are regarded as wedge structures that the above situations seriously and often appear on brittle materials. Regarding the stress intensity factor K of the driving force for wedge structure failure, Chen, Dunn, and Seweryn, with numerical analysis for the fracture experiment, explained that the critical stress intensity factor Kc for single isotropic material fracture could be the intensity failure specification for wedge structures. Nevertheless, V-notched brittle materials are likely to receive great stress over the surface elastic energy of the structure when being loaded, causing brittle failure at the apex. When the high-strength and light-weight composite material is attached to reinforce the surface of brittle materials, the energy is reinforced to enhance the critical stress intensity factor of the overall structure, aiming to improve the failure of brittle materials resulted from stress singularity. This paper therefore tends to discuss the effects of the composite attachment, layer, and fiber reinforced direction on the critical stress intensity factor when the structure is being fractured.


Sign in / Sign up

Export Citation Format

Share Document