On the size-dependent critical stress intensity factor of confined brittle nanofilms

2012 ◽  
Vol 86 ◽  
pp. 13-22 ◽  
Author(s):  
A.R. Nazmus Sakib ◽  
Ashfaq Adnan
2018 ◽  
Vol 32 (22) ◽  
pp. 1850241 ◽  
Author(s):  
Minh-Quy Le

Molecular dynamics simulations with Tersoff potential were performed to study the fracture properties of monolayer germanene at 300 K. The two-dimensional (2D) Young’s modulus, 2D tensile strength and axial strain at the tensile strength of pristine monolayer germanene are about 36.0 and 37.5 N/m; 5.1 and 4.6 N/m; 21.4 and 15.9%, in the zigzag and armchair directions, respectively. Griffith theory was applied to compute the critical stress intensity factor. Compared to monolayer graphene, the critical stress intensity factor of monolayer germanene is much smaller. Fracture pattern and effects of the initial crack length on the fracture properties are also studied. Results are useful for future design and applications of this 2D material.


2000 ◽  
Vol 649 ◽  
Author(s):  
H.W. Ngan ◽  
Y.L. Chiu

ABSTRACTBy analysing the relevant results in the literature, we have found that, when indentation is made on a subgranular level, the hardness varies roughly inversely with the square root of the distance between the indent and the grain boundary. This effect is analogous to the Hall-Petch effect for macroscopic deformation.


2014 ◽  
Vol 592-594 ◽  
pp. 1160-1164 ◽  
Author(s):  
S. Sundaresan ◽  
B. Nageswara Rao

The life expectancy or failure of aerospace pressure vessels is evaluated by the critical stress intensity determined by the crack growth resistance curve of a material. Load versus crack mouth opening displacement data is generated from the Compact Tension specimens made from the weld joints of maraging steel rocket motor segments. The steps involved to generate critical stress intensity factor is explained. A power law is adopted to model the crack extension in terms of stress intensity factor and determine the maximum failure load of weld specimens. Maximum failure loads of CT specimens obtained by test and analysis are presented.


2012 ◽  
Vol 472-475 ◽  
pp. 2211-2216
Author(s):  
Jun Ding ◽  
Xia Huang ◽  
Wen Zhong Li ◽  
Xiang Guo Zeng

In this work, crack initiation due to the pre-existence of an initial crack has been predicted according to the criterion of critical stress intensity factor and succeeding crack evolution and propagation are also been performed using molecular dynamic (MD) method in combination with finite element method (FEM). The modified embedded atom method potentials were employed to characterize the interaction among atoms in magnesium alloy in MD simulation. Finite element simulations have been first conducted to provide subsequent MD simulation with boundary conditions constrained at the atoms. The MD simulation shows that atoms around crack arrange disorderly, aggravate rapidly suggesting the onset of crack initiation and eventually results in the failure of alloy specimen. It helps to evaluate the value of critical stress intensity factor for a specific crack configuration, which provides an effective way to determine the stress intensity factor for the specified configuration.


Sign in / Sign up

Export Citation Format

Share Document