Topography of middle-latency somatosensory evoked potentials following painful laser stimuli and non-painful electrical stimuli

Author(s):  
V. Kunde ◽  
R.-D. Treede
2012 ◽  
Vol 112 (7) ◽  
pp. 1166-1173 ◽  
Author(s):  
Guillaume Bouvier ◽  
Louis Laviolette ◽  
Felix Kindler ◽  
Lionel Naccache ◽  
André Mouraux ◽  
...  

Background: experimentally induced dyspnea of the work/effort type inhibits, in a top-down manner, the spinal transmission of nociceptive inputs (dyspnea-pain counterirritation). Previous studies have demonstrated that this inhibition can be assessed by measuring the nociceptive flexion reflex (RIII). However, its clinical application is limited because of the strong discomfort associated with the electrical stimuli required to elicit the RIII reflex. Study objectives: we examined whether the dyspnea-pain counterirritation phenomenon can be evaluated by measuring the effect of work/effort type dyspnea on the magnitude of laser-evoked brain potentials (LEPs). Methods: 10 normal male volunteers were studied (age: 19–30 years). LEPs were elicited using a CO2 laser stimulator delivering 10- to 15-ms stimuli of 6 ± 0.7 W over a 12.5 mm2 area. The EEG was recorded using nine scalp channels. Non-nociceptive somatosensory-evoked potentials (SEPs) served as control. LEPs and SEPs were recorded before, during, and after 10 min of experimentally induced dyspnea [inspiratory threshold loading (ITL)]. Results: pain caused by the nociceptive laser stimulus was mild. ITL consistently induced dyspnea, mostly of the “excessive effort” type. Amplitude of the N2-P2 wave of LEPs decreased by 37.6 ± 13.8% during ITL and was significantly correlated with the intensity of dyspnea [ r = 0.66, CI 95% (0.08–0.92, P = 0.0319)]. In contrast, ITL had no effect on the magnitude of non-nociceptive SEPs. Discussion: experimentally induced dyspnea of the work/effort type reduces the magnitude of LEPs. This reduction correlates with the intensity of dyspnea. The recording of LEPs could constitute a clinically applicable approach to assess the dyspnea-pain counterirritation phenomenon in patients.


1996 ◽  
Vol 26 (5) ◽  
pp. 311-319 ◽  
Author(s):  
R Ferri ◽  
S Del Gracco ◽  
M Elia ◽  
S.A. Musumeci ◽  
R Spada ◽  
...  

2011 ◽  
Vol 122 (8) ◽  
pp. 1645-1649 ◽  
Author(s):  
Yan Zhang ◽  
Ying Ying Su ◽  
Hong Ye ◽  
Shu Ying Xiao ◽  
Wei Bi Chen ◽  
...  

1997 ◽  
Vol 85 (1) ◽  
pp. 259-266 ◽  
Author(s):  
Y. Nishihira ◽  
K. Funase ◽  
H. Araki ◽  
K. Imanaka

We examined changes in somatosensory evoked potentials (SEPs) during voluntary movement of fingers innervated by the stimulated nerve and those not innervated by the stimulated nerve and the relationship to the kind of movement modality. Analysis showed that the amplitude of most components at F3, C3', and P3, except for P45 at C3, N35 and P45 at P3, decreased during voluntary finger movement tasks. Further, we found that the components of P40 at F3, P45 at C3', and N35 at P3 were increased during the voluntary pulling movement of the second and the third digits compared to those during the voluntary pushing movement of the fourth and the fifth digits, whereas all other components were decreased at F3, C3', and P3. We also found that not all components of SEPs were decreased while some SEPs in middle latency were increased. In conclusion, we confirmed the selectivity in attenuation of the SEPs. Moreover, we noted an interesting finding that the selectivity of attenuation of the SEPs was most frequently observed in the N20, P30 (P25 at F3), N35 (N30 at F3), and P45 (P40 at F3) components at F3, C3', and P3.


Sign in / Sign up

Export Citation Format

Share Document