High-brightness rf photocathode guns for single pass X-ray free-electron lasers

Author(s):  
Patrick G. O'Shea
2018 ◽  
Vol 20 (2) ◽  
pp. 024005 ◽  
Author(s):  
S Serkez ◽  
G Geloni ◽  
S Tomin ◽  
G Feng ◽  
E V Gryzlova ◽  
...  

2010 ◽  
Vol 03 (01) ◽  
pp. 13-37 ◽  
Author(s):  
Jochen R. Schneider

Accelerator-based light sources stimulated progress in photon science in a truly extraordinary manner. The spectral brightness of storage-ring-based facilities increased by three orders of magnitude every 10 years since the 1960s. The extreme peak brightness at single-pass free electron X-ray lasers with pulse durations variable between about 1 and 300 femtoseconds will allow transformative experiments in many areas of science. This article is an attempt to show how progress in accelerator science and technology stimulated advancement in photon science, by discussing a limited number of examples of work at third generation storage ring facilities and free electron lasers. Hopes for further improvements in specific beam properties are expressed.


Atoms ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 28
Author(s):  
Nicola Piovella ◽  
Luca Volpe

High-gain free-electron lasers, conceived in the 1980s, are nowadays the only bright sources of coherent X-ray radiation available. In this article, we review the theory developed by R. Bonifacio and coworkers, who have been some of the first scientists envisaging its operation as a single-pass amplifier starting from incoherent undulator radiation, in the so called self-amplified spontaneous emission (SASE) regime. We review the FEL theory, discussing how the FEL parameters emerge from it, which are fundamental for describing, designing and understanding all FEL experiments in the high-gain, single-pass operation.


2010 ◽  
Vol 03 (01) ◽  
pp. 185-202 ◽  
Author(s):  
Claudio Pellegrini

We discuss recent results on soft and hard X-ray free electron lasers (FELs) and how they can be used to design and optimize the next generation of these sources of high brightness, coherent photons, with femtosecond pulse duration, or very narrow linewidth. In particular, we consider the experimental and theoretical progress in the electron beam generation and manipulation. These results, when combined with the successful development of powerful simulation codes, can be used to design optimized, high intensity sources of coherent photons, and to reduce their size and cost.


Author(s):  
Uwe Bergmann ◽  
Jan Kern ◽  
Robert W. Schoenlein ◽  
Philippe Wernet ◽  
Vittal K. Yachandra ◽  
...  

2021 ◽  
pp. 100097
Author(s):  
Nanshun Huang ◽  
Haixiao Deng ◽  
Bo Liu ◽  
Dong Wang ◽  
Zhentang Zhao

2021 ◽  
Author(s):  
Inhyuk Nam ◽  
Chang-Ki Min ◽  
Bonggi Oh ◽  
Gyujin Kim ◽  
Donghyun Na ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document