Nitrate reductase activity changes during a culture cycle of tobacco cells: the participation of a membrane-bound form enzyme

Plant Science ◽  
1991 ◽  
Vol 79 (2) ◽  
pp. 193-204 ◽  
Author(s):  
J. Hoarau ◽  
A. Nato ◽  
D. Lavergne ◽  
V. Flipo ◽  
B. Hirel
FEBS Letters ◽  
1978 ◽  
Vol 95 (2) ◽  
pp. 290-294 ◽  
Author(s):  
Gérard Giordano ◽  
Alec Graham ◽  
David H. Boxer ◽  
Bruce A. Haddock ◽  
Edgard Azoulay

1979 ◽  
Vol 184 (1) ◽  
pp. 45-50 ◽  
Author(s):  
E Cadenas ◽  
P B Garland

We have used the penicillin selection method of Autissier & Kepes [(1972) Biochimie 54, 93–101] to study the segregation of membrane-bound respiratory nitrate reductase (EC 1.9.6.1) in Escherichia coli for the three generations after cessation of nitrate reductase synthesis caused by withdrawal of nitrate from the growth medium. We also included a physical separation procedure that permitted direct assay for nitrate reductase activity among all fractions produced by the penicillin selection method. We conclude that the segregation of nitrate reductase after cell division is dispersive, and not semi-conservative as proposed by Autissier & Kepes (1972).


2005 ◽  
Vol 33 (1) ◽  
pp. 127-129
Author(s):  
N. Bonnard ◽  
A. Tresierra-Ayala ◽  
E.J. Bedmar ◽  
M.J. Delgado

The napEDABC genes of Bradyrhizobium japonicum encode the periplasmic nitrate reductase, an Mo-containing enzyme which catalyses the reduction of nitrate to nitrite when oxygen concentrations are limiting. In this bacterium, another set of genes, modABC, code for a high affinity ABC-type Mo transport system. A B. japonicum modA mutant has been obtained that is not capable of growing anaerobically with nitrate and lacks nitrate reductase activity. Under nitrate respiring conditions, when Mo concentrations are limiting, the B. japonicum modA mutant lacked both the 90 kDa protein corresponding to the NapA component of the periplasmic nitrate reductase, and the membrane-bound 25 kDa c-type cytochrome NapC. Regulatory studies using a napE–lacZ fusion indicated that napE expression was highly reduced in the modA mutant background when the cells were incubated anaerobically with nitrate under Mo-deficient conditions.


Crop Science ◽  
1966 ◽  
Vol 6 (2) ◽  
pp. 169-173 ◽  
Author(s):  
L. E. Schrader ◽  
D. M. Peterson ◽  
E. R. Leng ◽  
R. H. Hageman

Sign in / Sign up

Export Citation Format

Share Document