Investigation of vortex breakdown on delta wings using Navier-Stokes equations

1992 ◽  
Vol 10 (4-6) ◽  
pp. 399-408 ◽  
Author(s):  
C-H Hsu ◽  
C H Liu
1999 ◽  
Vol 122 (1) ◽  
pp. 179-183 ◽  
Author(s):  
Robert E. Spall ◽  
Blake M. Ashby

Solutions to the incompressible Reynolds-averaged Navier–Stokes equations have been obtained for turbulent vortex breakdown within a slightly diverging tube. Inlet boundary conditions were derived from available experimental data for the mean flow and turbulence kinetic energy. The performance of both two-equation and full differential Reynolds stress models was evaluated. Axisymmetric results revealed that the initiation of vortex breakdown was reasonably well predicted by the differential Reynolds stress model. However, the standard K-ε model failed to predict the occurrence of breakdown. The differential Reynolds stress model also predicted satisfactorily the mean azimuthal and axial velocity profiles downstream of the breakdown, whereas results using the K-ε model were unsatisfactory. [S0098-2202(00)01601-1]


A fully three-dimensional numerical simulation of vortex breakdown using the unsteady, incompressible Navier–Stokes equations has been performed. Solutions to four distinct types of breakdown are identified and compared with experimental results. The computed solutions include weak helical, double helix, spiral, and bubble-type breakdowns. The topological structure of the various breakdowns as well as their interrelationship are studied. The data reveal that the asymmetric modes of breakdown may be subject to additional breakdowns as the vortex core evolves in the streamwise direction. The solutions also show that the freestream axial velocity distribution has a significant effect on the position and type of vortex breakdown.


1987 ◽  
Vol 179 ◽  
pp. 179-200 ◽  
Author(s):  
Hans J. Lugt ◽  
Michel Abboud

A flow circulation in a closed circular-cylindrical container is produced by a rotating lid. After a transient phase from an initial state at rest a steady-flow situation is reached for a certain parameter range. In a subspace of this parameter range an undulating meridional flow occurs that may exhibit at the axis of rotation one or several separation bubbles which are interpreted as vortex breakdown. Numerical calculations on the basis of the Navier-Stokes equations for incompressible homogeneous and Boussinesq fluids enable the study of the influence of various flow parameters on the properties of these separation bubbles. The parameters varied are the Reynolds, Prandtl, Rayleigh, and Eckert numbers together with the ratio of height to radius of the container. The numerical results are in good agreement with experiments performed by Vogel, Ronnenberg, and Escudier. The stability of the fluid motions in these experiments with respect to non-axisymmetric disturbances strongly suggests that the corresponding axisymmetric solutions of the Navier-Stokes equations are stable configurations.


2005 ◽  
Author(s):  
Majid Molki ◽  
Ismail Hakan Olcay

A computational research was conducted to explore the nature of the flow in a cylindrical enclosure with a rotating lid. The aspect ratio (AR) of the cylinder used in this research was maintained at 1.5 and 2.5, and the Reynolds number (Re) ranged from 990 to 2200. The three-dimensional Navier-Stokes equations were solved by the finite volume technique. Mesh adaptation was used to improve the quality of the mesh and computations. The results for (AR, Re) = (1.5, 1290) and (2.5, 2200) indicated the existence of one and two vortex breakdown bubbles along the axis of the cylinder, respectively. The results also showed that fluid spirals downward along the cylindrical wall and moves slowly inward towards the axis. This spiral motion was intensified at higher values of the Reynolds number. Comparison with experimental data indicated an excellent agreement. The vortex breakdown and the flow patterns predicted by this work are consistent with those reported in the existing literature.


1990 ◽  
Vol 221 ◽  
pp. 553-576 ◽  
Author(s):  
G. L. Brown ◽  
J. M. Lopez

The physical mechanisms for vortex breakdown which, it is proposed here, rely on the production of a negative azimuthal component of vorticity, are elucidated with the aid of a simple, steady, inviscid, axisymmetric equation of motion. Most studies of vortex breakdown use as a starting point an equation for the azimuthal vorticity (Squire 1960), but a departure in the present study is that it is explored directly and not through perturbations of an initial stream function. The inviscid equation of motion that is derived leads to a criterion for vortex breakdown based on the generation of negative azimuthal vorticity on some stream surfaces. Inviscid predictions are tested against results from numerical calculations of the Navier-Stokes equations for which breakdown occurs.


1996 ◽  
Vol 322 ◽  
pp. 165-200 ◽  
Author(s):  
Hideshi Hanazaki

The inertial waves excited in a uniformly rotating fluid passing through a long circular tube are studied numerically. The waves are excited either by a local deformation of the tube wall or by an obstacle located on the tube axis. When the flow is subcritical, i.e. when the phase and group velocity of the fastest wave mode in their long-wave limit are larger than the incoming axial flow velocity, the excited waves propagate upstream of the excited position. The non-resonant waves have many linear aspects, including the upstream-advancing speed of the wave and the coexisting lee wavelength. When the flow is critical (resonant), i.e. when the long-wave velocity is nearly equal to the axial flow velocity, the large-amplitude waves are resonantly excited. The time development of these waves is described well by the equation derived by Grimshaw & Yi (1993). The integro-differential equation, which describes the strongly nonlinear waves until the axial flow reversal occurs, can predict the onset time and position of the recirculation eddies observed in the solutions of the Navier-Stokes equations. The numerical results and the theory both show that the flow reversal most probably occurs on the tube axis and also when the waves are excited by a contraction of the tube wall. The structure of the recirculation eddies obtained in the solutions of the Navier-Stokes equations at Re = 105 is similar to the axisymmetric or ‘bubble-type’ breakdown observed in the experiments of the vortex-breakdown which used a different non-uniform (Burgers-type) rotation. In uniformly rotating fluids the formation of the recirculation eddies has not been observed in the previous numerical studies of vortex breakdown where a straight tube was used and thus the inertial waves were not excited. This shows that the generation of the recirculation eddies in this study is genuinely explained by the topographically excited large-amplitude inertial ‘waves’ and not by other ‘instability’ mechanisms. Since the wave cannot be excited in a straight tube even in the non-uniformly rotating flows, the generation mechanism of the recirculation eddies in this study is different from the previous numerical studies for the vortex breakdown. The occurrence of the recirculation eddies depends not only on the Froude number and the strength of the excitation source but also on the Reynolds number since the wave amplitude generally decreases by the viscous effects. Some relations to the experiments of vortex breakdown, which have been exclusively done for non-uniformly rotating fluids but done in a ‘non-uniform tube’, are discussed. The flow states, which are classified as supercritical, subcritical or critical in hydraulic terminology, changes along the flow when the upstream flow is near resonant conditions and a non-uniform tube is used.


2002 ◽  
Vol 471 ◽  
pp. 51-70 ◽  
Author(s):  
M. PÉREZ-SABORID ◽  
M. A. HERRADA ◽  
A. GÓMEZ-BAREA ◽  
A. BARRERO

We present a numerical study of the downstream evolution (mechanical and thermal) of vortex-jet cores whose velocity and temperature fields far from the axis match a family of inviscid and non-conducting vortices. The far-velocity field is rotational, except for a particular case which corresponds to the well-known Long's vortex. The evolution of the vortex core depends on both the conditions at a certain upstream station, characterized by the dimensionless value of the velocity at the axis, and a dimensionless swirling parameter L defined as the ratio of the values of the azimuthal and axial velocities outside the vortex core. This numerical study, based on the quasi-cylindrical approximation (QC) of the Navier–Stokes equations, determines the conditions under which the vortex evolution proceeds smoothly, eventually reaching an asymptotic self-similar behaviour as described in the literature (Fernández-Feria, Fernández de la Mora & Barrero 1995; Herrada, Pérez-Saborid & Barrero 1999), or breaks in a non-slender solution (vortex breakdown). In particular, the critical value L = Lb(a) beyond which vortex breakdown occurs downstream is a function of a dimensionless parameter a characterizing the axial momentum of the vortex jet at an initial upstream station. It is found numerically that for very large values of a this vortex breakdown criterion tends to an asymptote which is precisely the value L = L* predicted by the self-similar analysis, and beyond which a self-similar structure of the vortex core does not exist. In addition, the computation of the total temperature field provides useful information on the physical mechanisms responsible for the thermal separation phenomenon observed in Ranque–Hilsch tubes and other swirling jet devices. In particular, the mechanical work of viscous forces which gives rise to an intense loss of kinetic energy during the initial stages of the evolution has been identified as the physical mechanism responsible for thermal separation.


Sign in / Sign up

Export Citation Format

Share Document