Modeling of the spatial correlation and intensity of low-frequency surface noise in the deep ocean

2017 ◽  
Vol 98 (11) ◽  
pp. 2429-2454 ◽  
Author(s):  
Jennifer A. MacKinnon ◽  
Zhongxiang Zhao ◽  
Caitlin B. Whalen ◽  
Amy F. Waterhouse ◽  
David S. Trossman ◽  
...  

Abstract Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatiotemporal patterns of mixing are largely driven by the geography of generation, propagation, and dissipation of internal waves, which supply much of the power for turbulent mixing. Over the last 5 years and under the auspices of U.S. Climate Variability and Predictability Program (CLIVAR), a National Science Foundation (NSF)- and National Oceanic and Atmospheric Administration (NOAA)-supported Climate Process Team has been engaged in developing, implementing, and testing dynamics-based parameterizations for internal wave–driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here, we review recent progress, describe the tools developed, and discuss future directions.


1965 ◽  
Vol 38 (6) ◽  
pp. 1060-1061 ◽  
Author(s):  
Albert N. Guthrie ◽  
John D. Shaffer
Keyword(s):  

2019 ◽  
Vol 116 (18) ◽  
pp. 8728-8733 ◽  
Author(s):  
Feng Zhu ◽  
Julien Emile-Geay ◽  
Nicholas P. McKay ◽  
Gregory J. Hakim ◽  
Deborah Khider ◽  
...  

Climate records exhibit scaling behavior with large exponents, resulting in larger fluctuations at longer timescales. It is unclear whether climate models are capable of simulating these fluctuations, which draws into question their ability to simulate such variability in the coming decades and centuries. Using the latest simulations and data syntheses, we find agreement for spectra derived from observations and models on timescales ranging from interannual to multimillennial. Our results confirm the existence of a scaling break between orbital and annual peaks, occurring around millennial periodicities. That both simple and comprehensive ocean–atmosphere models can reproduce these features suggests that long-range persistence is a consequence of the oceanic integration of both gradual and abrupt climate forcings. This result implies that Holocene low-frequency variability is partly a consequence of the climate system’s integrated memory of orbital forcing. We conclude that climate models appear to contain the essential physics to correctly simulate the spectral continuum of global-mean temperature; however, regional discrepancies remain unresolved. A critical element of successfully simulating suborbital climate variability involves, we hypothesize, initial conditions of the deep ocean state that are consistent with observations of the recent past.


1974 ◽  
Vol 56 (4) ◽  
pp. 1122-1125 ◽  
Author(s):  
J. D. Shaffer ◽  
R. M. Fitzgerald ◽  
A. N. Guthrie

2018 ◽  
Vol 144 (3) ◽  
pp. 1733-1733
Author(s):  
Gerald L. D'Spain ◽  
Kenneth Houston ◽  
Robert Tingley ◽  
Terry Nawara ◽  
Daniel Lawrence ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document