Stress concentration factor for an orthotropic finite-width plate containing elliptical edge notches

1991 ◽  
Vol 41 (1) ◽  
pp. 47-53 ◽  
Author(s):  
Yao Weixing ◽  
Yu Xinlu
2007 ◽  
Vol 42 (7) ◽  
pp. 551-555 ◽  
Author(s):  
K Bakhshandeh ◽  
I Rajabi

In this study, the effects of orthotropy ratio and plate length on the stress concentration factor for orthotropic plates with a centred circular opening under the action of uniaxial tension loads are investigated by use of the finite element method. This work demonstrates that the stress concentration factor depends on the length of the member in addition to other established geometric parameters. The value of the transition length between long and short plates is computed and reported as well. This study has shown that Tan's equation for a finite width orthotropic plate is accurate for a ratio of the opening radius to plate semiwidth of less than 0.35 for orthotropy ratios less than 50. A new concept is introduced, namely the transition ratio.


2013 ◽  
Vol 03 (03) ◽  
pp. 153-159 ◽  
Author(s):  
Murilo Augusto Vaz ◽  
Julio Cesar Ramalho Cyrino ◽  
Gilson Gomes da Silva

1979 ◽  
Vol 46 (3) ◽  
pp. 691-695 ◽  
Author(s):  
A. J. Durelli ◽  
K. Rajaiah

This paper presents optimized hole shapes in plates of finite width subjected to uniaxial load for a large range of hole to plate widths (D/W) ratios. The stress-concentration factor for the optimized holes decreased by as much as 44 percent when compared to circular holes. Simultaneously, the area covered by the optimized hole increased by as much as 26 percent compared to the circular hole. Coefficients of efficiency between 0.91 and 0.96 are achieved. The geometries of the optimized holes for the D/W ratios considered are presented in a form suitable for use by designers. It is also suggested that the developed geometries may be applicable to cases of rectangular holes and to the tip of a crack. This information may be of interest in fracture mechanics.


1962 ◽  
Vol 66 (617) ◽  
pp. 323-326 ◽  
Author(s):  
Ralph Papirno

SummaryUsing relations derived by Dixon and Inglis, the values of the elastic stress concentration factor for a fixed length notch in a finite width tensile strip with a varying notch end radius have been obtained in the form:Photoelastic tests on internally notched tensile strip models showed excellent agreement with the analytical results.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110264
Author(s):  
Zhang Ying ◽  
Lian Zhanghua ◽  
Gao Anqi ◽  
Yang Kun

The thread connection’s root fillet radius of 0.038″ size is the greatest weakness of the API NC type joints and thread. During the slimehole drilling, especially in the deep and ultra-deep gas well, its stress concentration factor and notch sensitivity factor are very high A novel thread connection design (TM) of a drilling tool is proposed to decrease the fatigue failure of the slimehole drilling tool in the deep and the ultra-deep gas well in the Tarim oilfield China. The novelty in the TM thread structure is, reducing the threads per inch, extending the distance from the last engaged thread to the external shoulder of the pin and adding three threads to the conventional connection. The novel thread connection will improve the slimehole drilling tool’s anti-fatigue life due to its improved elasticity and rigidity. Furthermore, the TM can transfer the maximum stress at the connection root to the loaded surface, which can effectively lower the fatigue notch’s sensitivity coefficient. In this paper, the finite element method (FEM) is applied to carry out the detailed comparative analysis of the TM with existing thread connection NC38, TX60 and TH90. The TM has the lowest stress concentration factor and fatigue notch sensitivity coefficient, so its anti-fatigue life is the highest. In addition, TM is manufactured and is tested at Tarim oilfield in China.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Changqing Miao ◽  
Yintao Wei ◽  
Xiangqiao Yan

A numerical approach for the stress concentration of periodic collinear holes in an infinite plate in tension is presented. It involves the fictitious stress method and a generalization of Bueckner's principle. Numerical examples are concluded to show that the numerical approach is very efficient and accurate for analyzing the stress concentration of periodic collinear holes in an infinite plate in tension. The stress concentration of periodic collinear square holes in an infinite plate in tension is studied in detail by using the numerical approach. The calculated stress concentration factor is proven to be accurate.


Sign in / Sign up

Export Citation Format

Share Document