scholarly journals A novel thread connection structure of slimehole drilling tool in ultra-deep natural gas well

2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110264
Author(s):  
Zhang Ying ◽  
Lian Zhanghua ◽  
Gao Anqi ◽  
Yang Kun

The thread connection’s root fillet radius of 0.038″ size is the greatest weakness of the API NC type joints and thread. During the slimehole drilling, especially in the deep and ultra-deep gas well, its stress concentration factor and notch sensitivity factor are very high A novel thread connection design (TM) of a drilling tool is proposed to decrease the fatigue failure of the slimehole drilling tool in the deep and the ultra-deep gas well in the Tarim oilfield China. The novelty in the TM thread structure is, reducing the threads per inch, extending the distance from the last engaged thread to the external shoulder of the pin and adding three threads to the conventional connection. The novel thread connection will improve the slimehole drilling tool’s anti-fatigue life due to its improved elasticity and rigidity. Furthermore, the TM can transfer the maximum stress at the connection root to the loaded surface, which can effectively lower the fatigue notch’s sensitivity coefficient. In this paper, the finite element method (FEM) is applied to carry out the detailed comparative analysis of the TM with existing thread connection NC38, TX60 and TH90. The TM has the lowest stress concentration factor and fatigue notch sensitivity coefficient, so its anti-fatigue life is the highest. In addition, TM is manufactured and is tested at Tarim oilfield in China.

1962 ◽  
Vol 13 (3) ◽  
pp. 275-284 ◽  
Author(s):  
T. H. Lambert ◽  
R. J. Brailey

SummaryThe fatigue life of a pin-jointed connection can be optimised by using a moderately high degree of interference between the loading pin and plate. Where a joint has to be assembled in confined conditions, difficulty may be experienced in inserting the interference-fit pin and one possible solution is to use a pre-assembled interference-fit bush in the plate, leaving only a light interference-fit pin to be pressed in on assembly of the joint. It is shown that a relatively thick bush of diametral ratio 4/3 will give a reduction in shear stress concentration factor for the plate comparable with that obtained with a solid pin, but that maximum benefit is not obtained with a thinner bush of diametral ratio 8/7. Where thin bushes are essential in order to maintain the ultimate tensile and fatigue strengths of the plate and /or the ultimate and fatigue strengths of the pin, the shear stress concentration factor for the plate is reduced as the modular ratio of bush to plate is increased and as the interference fit of the loading pin in the bush is increased.


2011 ◽  
Vol 295-297 ◽  
pp. 1885-1889
Author(s):  
Sen Li ◽  
Dong Po Wang ◽  
Hai Zhang ◽  
Bo Tan

Butt-joint specimens of Q235B low-strength steel were treated by TIG dressing and ultrasonic peening combined method. The paper presents comparative fatigue test for welded specimens in the as-welded condition and specimens treated by TIG dressing, ultrasonic peening treatment (UPT) and the combined method. When the ratio of stress R=0.1, contrasted with the specimens in as welded condition, the fatigue strength of the specimens treated by TIG dressing is increased by 36%. The fatigue strength of the specimens treated by the combined method and UPT are almost the same, which are increased by 57% and 56% respectively. In the high stress level, weld toe treated by the combined method has smaller stress concentration factor than that of UPT, resulting in less release of residual compressive stress. So it's more effective to improve the fatigue life by the combined method. While in the low stress level, the residual compressive stress of weld toe treated by the combined method and UPT are nearly the same. Besides, the effect of stress concentration factor is smaller, thus the fatigue life of the two methods have little difference.


Author(s):  
Naoaki Nagaishi ◽  
Michio Yoshikawa ◽  
Saburo Okazaki ◽  
Hisao Matsunaga ◽  
Junichiro Yamabe ◽  
...  

Fatigue tests were performed using three types of round-bar specimens of Type 304, meta-stable, austenitic stainless steel. The specimens had circumferential notch with stress concentration factors, Kt, of 2, 3 or 6.6. Load controlled fatigue tests were conducted at stress ratio, R, of 0.1 and −1 in ambient air at room temperature. At R of 0.1, fatigue life was decreased with an increase in the stress concentration factor. Conversely, at R of −1, the stress concentration factor had little influence on the fatigue life. To understand the mechanism of the stress ratio effect, local deformation behavior at and beneath the notch root during the fatigue test was computed by means of finite element analysis considering that the plastic constitutive model describes the cyclic stress-strain response.


2017 ◽  
Vol 122 (1248) ◽  
pp. 316-332 ◽  
Author(s):  
D. Yang ◽  
Z. Liu

ABSTRACTMachining-induced surface integrity has an important effect on reliability and service life of the components used in the aerospace industry where titanium alloy Ti-6Al-4V is widely applied. Characterisation of machining-induced surface integrity and revealing its effect on fatigue life are conducive to structural fatigue life optimisation design. In the present study, surface topography, residual stress, microstructure and micro-hardness were first characterised in peripheral milling of titanium alloy Ti-6Al-4V. Then, low-cycle fatigue performances of machined specimens were investigated on the basis of the tension-tension tests. Finally, the effects of surface integrity factors (stress concentration factor, residual stress and micro-hardness) on fatigue performances were discussed. Results show that stress concentration can reduce the fatigue life while increasing the residual compressive stress, and micro-hardness is beneficial to prolonging the fatigue life, but when the surface material of the specimen is subjected to plastic deformation due to yield, the residual stress on the surface is relaxed, and the effect on the fatigue performance is disappeared. Under the condition of residual stress relaxation, the stress concentration factor is the main factor to determine the low-cycle fatigue life of titanium alloy Ti-6Al-4V. While for the specimens with no residual stress relaxation, micro-hardness was the key factor to affect the fatigue life, followed by residual stress and stress concentration factor, respectively.


2016 ◽  
Vol 36 (9) ◽  
pp. 933-941 ◽  
Author(s):  
Pan Yusong ◽  
Chen Yan ◽  
Shen Qianqian ◽  
Pan Chengling

Abstract Biomaterials used as loading-bearing orthopedic implants usually require various excellent properties such as mechanical, bioactive and bio-tribological performances. Moreover, all of the orthopedic applications feature stress concentrations (notch sensitivity) in their design. In the present work, hydroxyapatite-reinforced polyetheretherketone functional gradient biocomposites (HA/PEEK FGBm) were successfully prepared by the layer stacking method combined with hot pressing molding technology. The effects of notch geometry on the stress-strain behavior of HA/PEEK FGBm were evaluated. The fracture morphology was investigated by scanning electron microscopy (SEM). The study of the stress-strain behavior indicated that the tensile and flexural stresses of HA/PEEK FGBm linearly increased with increasing strain under all the notch sensitivities. The fracture strain of the biocomposites decreased with increasing stress concentration factor and total HA content in the functional biocomposites. Moreover, the tensile and flexural strengths of HA/PEEK FGBm were lower than those of homogeneous HA/PEEK biocomposites. The SEM observation of the fracture micro-morphology showed that the fracture mechanism of HA/PEEK FGBm was gradually controlled by the brittle fracture process. Furthermore, both the tensile and the flexural strengths of HA/PEEK FGBm decreased with the increase in stress concentration factor and total HA content in the biocomposites.


1994 ◽  
Vol 116 (4) ◽  
pp. 403-408 ◽  
Author(s):  
N. Merah ◽  
T. Bui-Quoc ◽  
M. Bernard

Under cyclic loading, the effect of stress raisers on the fatigue life depends upon several parameters, the most important being the stress concentration factor, the stress level, and the material notch sensitivity. In particular, in the low-cycle fatigue region, a number of procedures are currently used, but additional developments are required for improvement of the life prediction capabilities. In this paper, a method is proposed for calculating notched specimen low-cycle fatigue life from unnotched specimen data using as the main parameter the stress concentration factor combined with the applied stress level and the cyclic-hardening properties of the material. The proposed method is then applied to several materials with a variety of notch geometries to obtain the predicted lives. The correlation between the calculated lives and the experimental data is discussed in connection with the predictions obtained from Neuber’s and Zwicky’s relations.


2004 ◽  
Vol 261-263 ◽  
pp. 399-404 ◽  
Author(s):  
Thongchai Fongsamootr ◽  
Charoenyut Dechwayukul ◽  
Notsanop Kamnerdtong ◽  
Carol A. Rubin ◽  
George T. Hahn

Riveted lap joints are widely used to assemble complex structures, e.g. aircraft fuselages. A thin layer of adhesive (sealant), is normally applied to lap joints in order to restrict the entry of moisture and retard corrosion. In this work, combined adhesive-riveted lap joints were studied to understand the effect of three parameters: panel thickness, adhesive stiffness and adhesive layer thickness, on single row non-countersunk riveted lap joints. Finite element analysis (FEA), along with Thin Adhesive Layer Analysis (TALA-developed for simulating the adhesive layer in lap joint models), were used to analyze the joint behavior. In previous studies, the stress concentration factor for single row riveted lap joints was found to be approximately 6.1, and the stress concentration factor for sealed riveted lap joints was approximately 5.2 for a 180 micron thick sealant layer. In this study, panel thickness, adhesive stiffness and adhesive layer thickness were varied parametrically in FEA analyses to determine their affects on the joints. The FEA/TALA results were used to predict the fatigue life of the joints as functions of the three parameters. The results show that the maximum tensile stress is smaller with a smaller panel thickness. The results also showed that the stress concentration factor in the joints was reduced when the stiffness of the adhesive layer was increased or when the thickness of the adhesive layer was decreased. Finally, fatigue tests showed that the fatigue life of the combined adhesive-riveted lap joints was greater than for riveted lap joints without adhesive.


Author(s):  
Gemi Maria Mathews ◽  
Althaf M

Tubular structures have become so much in use because of their structural performance and attractive appearance. But at the intersections of these tubular structures (i.e., tubular joints), there is stress concentration which adds the fatigue damage in structures which is exposed to cyclic loads. The stress concentration factor plays a crucial role in the computation of fatigue life of tubular structures exposed to cyclic loads. This paper aims to review the factors governing stress concentration factor at tubular joints.


Sign in / Sign up

Export Citation Format

Share Document