The role of inducible no synthase (iNOS) in the hyperdynamic circulation of portal hypertension

Hepatology ◽  
1995 ◽  
Vol 22 (4) ◽  
pp. A156 ◽  
Author(s):  
O SOUBRANE
1999 ◽  
Vol 79 ◽  
pp. 97
Author(s):  
Masayoshi Abe ◽  
Iku Okamoto ◽  
Kazuhiko Shibata ◽  
Keiichi Tanaka ◽  
Noriyuki Sakata ◽  
...  

2004 ◽  
Vol 280 (8) ◽  
pp. 7236-7243 ◽  
Author(s):  
Phuong A. Vo ◽  
Bhavini Lad ◽  
James A. P. Tomlinson ◽  
Stephanie Francis ◽  
Amrita Ahluwalia

1999 ◽  
Vol 338 (2) ◽  
pp. 295-303 ◽  
Author(s):  
Florian BROCKHAUS ◽  
Bernhard BRÜNE

Initiation of nitric oxide (NO•)-mediated apoptotic cell death in RAW 264.7 macrophages is associated with up-regulation of mitochondrial manganese superoxide dismutase (MnSOD; SOD2) and down-regulation of cytosolic copper zinc superoxide dismutase (CuZnSOD; SOD1) at their individual mRNA and protein levels. To evaluate the decreased CuZnSOD expression and the initiation of apoptosis we stably transfected macrophages to overexpress human CuZnSOD. Individual clones revealed a 2-fold increase in CuZnSOD activity. Expression of a functional and thus protective CuZnSOD was verified by attenuated superoxide (O2•-)-mediated apoptotic as well as necrotic cell death. In this study we showed that SOD-overexpressing macrophages (R-SOD1-12) were also protected against NO•-initiated programmed cell death. Protection was substantial towards NO• derived from exogenously added NO donors or when NO• was generated by inducible NO synthase activation, and was evident at the level of p53 accumulation, caspase activation and DNA fragmentation. Stimulation of parent and SOD-overexpressing cells with a combination of lipopolysaccharide and murine interferon γ produced equivalent amounts of nitrite/nitrate, which ruled out attenuated inducible NO• synthase activity during protection. Because protection by a O2•--scavenging system during NO•-intoxication implies a role of NO• and O2•- in the progression of cell damage, we used uric acid to delineate the role of peroxynitrite during NO•-elicited apoptosis. The peroxynitrite scavenger uric acid left S-nitrosoglutathione or spermine-NO-elicited apoptosis unaltered, blocking only 3-morpholinosydnonimine-mediated cell death. As a result we exclude peroxynitrite from contributing, to any major extent, to NO•-mediated apoptosis. Therefore protection observed with CuZnSOD overexpression is unlikely to stem from interference with peroxynitrite formation and/or action. Unequivocally, the down-regulation of CuZnSOD is associated with NO• cytotoxicity, whereas CuZnSOD overexpression protects macrophages from apoptosis.


1990 ◽  
Vol 23 (7) ◽  
pp. 1830-1837 ◽  
Author(s):  
Takanori Yoshida ◽  
Yoshinobu Mitarai ◽  
Michio Kobayashi

2010 ◽  
Vol 25 (3) ◽  
pp. 89-94 ◽  
Author(s):  
T. V. Tupitsyna ◽  
E. A. Bondarenko ◽  
A. Yu. Botsina ◽  
I. M. Shetova ◽  
S. A. Limborskaya ◽  
...  

1996 ◽  
Vol 11 (2) ◽  
pp. 152-158 ◽  
Author(s):  
FA-YAUH LEE ◽  
SUN-SANG WANG ◽  
MAY CHUEN-MAY YANG ◽  
YANG-TE TSAI ◽  
SHWU-LING WU ◽  
...  

Author(s):  
O.Y. Akimov ◽  
Z.I. Karpik ◽  
K.I. Oliynyk ◽  
A.V. Mishchenko ◽  
H.V. Kostenko

Fluorides, being hazardous contaminants of soil and drinking water, can get in excessive amounts into human and animal bodies. This is especially true for regions where the fluoride content in soils is very high, for example, Poltava, Dnipropetrovsk, and Kirovohrad regions in Ukraine. Excessive fluoride intake can change the rate of nitric oxide production. The impact of fluorides on changes in nitric oxide production and metabolism in the heart and the role of redox-sensitive transcription factors in these changes are poorly understood. The aim of this study was to determine the effect of activation of κB transcription factors and activator protein 1 on the activity of inducible NO-synthase, constitutive isoforms of NO-synthase, nitrite and nitrate reductase, arginase, concentration of nitrites, peroxynitrite and nitrosothiols in the heart of rats during chronic fluoride intoxication. Materials and methods. The study was performed on 24 adult male Wistar rats weighing 220-260 grams. Animals were randomly divided into 4 groups of 6 animals in each (control, chronic fluoride intoxication group, κB blockade group and activator protein 1 blockade group). The experiment lasted 30 days. We determined the activity of inducible NO-synthase, constitutive isoforms of NO-synthase, the concentration of peroxynitrite alkali and alkaline earth metals, the concentration of nitrites and nitrosothiols, the activity of nitrite reductase, nitrate reductase and arginase. Results. Chronic fluoride intoxication increases the activity of inducible NO-synthase by 1.74 times, does not affect the activity of constitutive isoforms and reduces the activity of arginase by 35.68% compared with the control group of animals. The concentration of nitrites in the heart of rats increases 1.73 times, peroxynitrite 1.43 times, and the concentration of nitrosothiols doubled. The use of κB transcription factor blockers and activator protein 1 reduces nitric oxide production from NO synthases and reduces the concentrations of all nitric oxide metabolites in the heart of rats under conditions of chronic fluoride intoxication. Conclusions. Activation of κB transcription factors and activator protein 1 during chronic excessive intake of fluoride leads to hyperproduction of nitric oxide in the heart of rats due to increased activity of inducible NO-synthase and nitrite reductases. Excess production of nitric oxide under chronic fluoride intoxication leads to the accumulation of nitrites, peroxynitrite and nitrosothiols in the heart of rats.


Sign in / Sign up

Export Citation Format

Share Document