The first examples of Mo2Ru2S2 cluster compounds obtained through a new type of reaction. Crystal structure of [(η5-MeO2CC5H4)2(μ3-CO)2Mo2Ru2(μ3-S)2(CO)6]

Polyhedron ◽  
1996 ◽  
Vol 15 (23) ◽  
pp. 4295-4298 ◽  
Author(s):  
Li-Cheng Song ◽  
Ji-Quan Wang ◽  
Qing-Mei Hu ◽  
Xiao-Ying Huang
Author(s):  
Süheyla Özbey ◽  
F. B. Kaynak ◽  
M. Toğrul ◽  
N. Demirel ◽  
H. Hoşgören

AbstractA new type of inclusion complex, S(–)-1 phenyl ethyl ammonium percholorate complex of R-(–)-2-ethyl - N - benzyl - 4, 7, 10, 13 - tetraoxa -1- azacyclopentadecane, has been prepared and studied by NMR, IR and single crystal X-ray diffraction techniques. The compound crystallizes in space group


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Xinzhao Xia ◽  
Lixian Xia ◽  
Geng Zhang ◽  
Yuxuan Jiang ◽  
Fugang Sun ◽  
...  

Abstract In this work, a new type of zinc(II) coordination polymer {[Zn(HIDC)(BBM)0.5]·H2O} n (Zn-CP) was synthesized using 4,5-imidazoledicarboxylic acid (H3IDC) and 2,2-(1,4-butanediyl)bis-1,3-benzimidazole (BBM) under hydrothermal conditions. Its structure has been characterized by infrared spectroscopy, elemental analysis and single crystal X-ray diffraction analysis. The Zn(II) ion is linked by the HIDC2− ligand to form a zigzag chain by chelating and bridging, and then linked by BBM to form a layered network structure. Adjacent layers are further connected by hydrogen bond interaction to form a 3-D supramolecular framework. The solid-state fluorescence performance of Zn-CP shows that compared with free H3IDC ligand, its fluorescence intensity is significantly enhanced.


2020 ◽  
Vol 646 (19) ◽  
pp. 1650-1654
Author(s):  
Arin‐Daniel Fuhrmann ◽  
Florian Pachel ◽  
Markus Ströbele ◽  
David Enseling ◽  
Thomas Jüstel ◽  
...  

1989 ◽  
Vol 156 ◽  
Author(s):  
E. Takayama-Muromachi

ABSTRACTSince the discovery of the high-Tc superconductor in the La-Ba-Cu-O system [1], a great deal of experimental and theoretical effort have been made to clarify the nature of the Cu-based oxides. In order to elucidate mechanism of the high-Tc superconductivity, discovery of a new type of superconductor is no doubt of great importance. Recently, Akimitsu et al. found a new oxide superconductor in the Nd-Ce-Sr-Cu-O system [2]. Soon after their discovery, the superconducting phase was isolated and identified [3]. It has a tetragonal cell with space group P4/nmm and has a structure closely related to but different from the K2NiF4− or T'-Nd2CuO4− -type structure. Although, Tc of the Nd-Ce-Sr-Cu oxide is not so high (ca. 20 K) compared with the 1–2–3 or Bi(Tl)-based superconductors, it has aroused interest widely due to a very simple crystal structure. In this article, I will discuss superconductivity and crystal chemistry of the Nd-Ce-Sr-Cu oxide. Also, various compounds isostructural to it will be presented.


1963 ◽  
Vol 2 (6) ◽  
pp. 1166-1171 ◽  
Author(s):  
J. A. Bertrand ◽  
F. A. Cotton ◽  
W. A. Dollase

1968 ◽  
Vol 0 (5) ◽  
pp. 263-264 ◽  
Author(s):  
B. Krebs ◽  
A. Müller ◽  
H. Beyer

Author(s):  
Anders Broo ◽  
Sten O. Nilsson Lill

A new force field, here called AZ-FF, aimed at being used for crystal structure predictions, has been developed. The force field is transferable to a new type of chemistry without additional training or modifications. This makes the force field very useful in the prediction of crystal structures of new drug molecules since the time-consuming step of developing a new force field for each new molecule is circumvented. The accuracy of the force field was tested on a set of 40 drug-like molecules and found to be very good where observed crystal structures are found at the top of the ranked list of tentative crystal structures. Re-ranking with dispersion-corrected density functional theory (DFT-D) methods further improves the scoring. After DFT-D geometry optimization the observed crystal structure is found at the leading top of the ranking list. DFT-D methods and force field methods have been evaluated for use in predicting properties such as phase transitions upon heating, mechanical properties or intrinsic crystalline solubility. The utility of using crystal structure predictions and the associated material properties in risk assessment in connection with form selection in the drug development process is discussed.


Sign in / Sign up

Export Citation Format

Share Document