Long-term facilitation of excitatory synaptic transmission in single motor cortical neurones of the cat produced by repetitive pairing of synaptic potentials and action potentials following intracellular stimulation

1981 ◽  
Vol 23 (3) ◽  
pp. 303-308 ◽  
Author(s):  
A. Baranyi ◽  
O. Feher
1998 ◽  
Vol 79 (4) ◽  
pp. 2013-2024 ◽  
Author(s):  
Albert Y. Hsia ◽  
Robert C. Malenka ◽  
Roger A. Nicoll

Hsia, Albert Y., Robert C. Malenka, and Roger A. Nicoll. Development of excitatory circuitry in the hippocampus. J. Neurophysiol. 79: 2013–2024, 1998. Assessing the development of local circuitry in the hippocampus has relied primarily on anatomic studies. Here we take a physiological approach, to directly evaluate the means by which the mature state of connectivity between CA3 and CA1 hippocampal pyramidal cells is established. Using a technique of comparing miniature excitatory postsynaptic currents (mEPSCs) to EPSCs in response to spontaneously occurring action potentials in CA3 cells, we found that from neonatal to adult ages, functional synapses are created and serve to increase the degree of connectivity between CA3-CA1 cell pairs. Neither the probability of release nor mean quantal size was found to change significantly with age. However, the variability of quantal events decreases substantially as synapses mature. Thus in the hippocampus the developmental strategy for enhancing excitatory synaptic transmission does not appear to involve an increase in the efficacy at individual synapses, but rather an increase in the connectivity between cell pairs.


1986 ◽  
Vol 55 (3) ◽  
pp. 484-498 ◽  
Author(s):  
J. M. Wojtowicz ◽  
H. L. Atwood

Synaptic transmission at the neuromuscular junction of the excitatory axon supplying the crayfish opener muscle was examined before and after induction of long-term facilitation (LTF) by a 10-min period of stimulation at 20 Hz. Induction of LTF led to a period of enhanced synaptic transmission, which often persisted for many hours. The enhancement was entirely presynaptic in origin, since quantal unit size and time course were not altered, and quantal content of transmission (m) was increased. LTF was not associated with any persistent changes in action potential or presynaptic membrane potential recorded in the terminal region of the excitatory axon. The small muscle fibers of the walking-leg opener muscle were almost isopotential, and all quantal events could be recorded with an intracellular microelectrode. In addition, at low frequencies of stimulation, m was small. Thus it was possible to apply a binomial model of transmitter release to events recorded from individual muscle fibers and to calculate values for n (number of responding units involved in transmission) and p (probability of transmission for the population of responding units) before and after LTF. In the majority of preparations analyzed (6/10), amplitude histograms of evoked synaptic potentials could be described by a binomial distribution with a small n and moderately high p. LTF produced a significant increase in n, while p was slightly reduced. The results can be explained by a model in which the binomial parameter n represents the number of active synapses and parameter p the mean probability of release at a synapse. Provided that a pool of initially inactive synapses exists, one can postulate that LTF involves recruitment of synapses to the active state.


1990 ◽  
Vol 64 (2) ◽  
pp. 565-574 ◽  
Author(s):  
W. Raabe

1. In deeply barbiturate-anesthetized animals. NH4+ decreases spinal excitatory synaptic transmission by neuronal depolarization and subsequent block of conduction of action potentials into presynaptic terminals of low-threshold (presumably Ia-) afferents. Because barbiturates by themselves depress excitatory synaptic transmission and may have modified the effects of NH4+, this study examines the effect of NH4+ on excitatory synaptic transmission in the unanesthetized animal. 2. The effects of NH4+ on monosynaptic and polysynaptic excitatory reflexes as well as di- and polysynaptic inhibition were investigated in the spinal cord of the decerebrate and unanesthetized cat in vivo. 3. The monosynaptic excitatory reflex (MSR) elicited by muscle nerve stimulation and polysynaptic excitatory reflexes elicited by muscle (MSR-PSR) or cutaneous nerve stimulation (Cut-PSR) were recorded from the ventral roots L7 or S1. The P-wave was recorded from the cord dorsum. Di- and polysynaptic inhibition was elicited by muscle nerve stimulation and measured as decrease of the MSR. 4. Intravenous infusion of ammonium acetate (AA) decreased MSR and the monosynaptic motoneuron pool excitatory postsynaptic potential (EPSP) recorded from the ventral root (VR-EPSP). Decrease of MSR and VR-EPSP was accompanied by an increase of the intraspinal conduction time in presynaptic terminals. The maximal decrease of the MSR was preceded by a period of transient increase of the MSR and reflex discharges from previously subthreshold VR-EPSPs. 5. The effects of NH4+ on MSR and VR-EPSP are consistent with those in barbiturate-anesthetized animals and suggest that NH4+ also decreases monosynaptic excitation in unanesthetized animals by depolarization and subsequent conduction block for action potentials in presynaptic terminals. 6. Decrease of the MSR was accompanied by a decrease of the P-wave, indicating that NH4+ simultaneously decreases mono- and oligosynaptic excitatory synaptic transmission as well as presynaptic inhibition. 7. Decrease of the MSR was accompanied by increases of MSR-PSR and Cut-PSR and decreases of di- and polysynaptic postsynaptic inhibition. 8. The neuronal circuits underlying MSR-PSR and Cut-PSR include presynaptic inhibition of group I and II afferents as well as postsynaptic inhibition of motoneurons. It is suggested that increases of MSR-PSR and Cut-PSR are contributed to by decreases of pre- and postsynaptic inhibition and neuronal depolarization by NH4+. These effects increase afferent input to motoneurons, permit uncontrolled discharge of motoneurons, and initiate reflex discharges by previously subthreshold excitatory postsynaptic potentials.


1989 ◽  
Vol 62 (6) ◽  
pp. 1461-1473 ◽  
Author(s):  
W. Raabe

1. Glutamine is thought to be a precursor of the pool of glutamate that is used as synaptic transmitter. NH4+ inhibits glutaminase, the enzyme presumed to cleave glutamine into glutamate in synaptic terminals. Therefore a decrease by NH4+ of excitatory synaptic transmission in hippocampus was suggested to be due to the inability to utilize glutamine as a precursor for glutamate and subsequent transmitter depletion. This study reexamines the effects of NH4+ on excitatory synaptic transmission. 2. The effects of NH4+ on excitatory synaptic transmission from low-threshold afferent fibers, presumably Ia-afferent fibers, to motoneurons was investigated in the spinal cord of anesthetized cats in vivo. 3. Action potentials of low-threshold afferent fibers were recorded at the entry of the dorsal roots into the spinal cord. An extracellular electrode within a motoneuron nucleus recorded the action potential of low-threshold afferent fibers and the extracellular monosynaptic excitatory postsynaptic potential, i.e., the focal synaptic potential (FSP). This extracellular electrode also recorded the antidromic field potential (AFP) in response to ventral root stimulation. Electrodes on the ventral roots recorded the monosynaptic reflex (MSR) and the monosynaptic excitatory postsynaptic potential in motoneurons electrotonically conducted into the ventral roots (VR-EPSP). 4. Intravenous infusion of ammonium acetate (AA) reversibly decreased MSR, VR-EPSP, and FSP, i.e., decreased excitatory synaptic transmission. 5. The decrease of VR-EPSP and FSP was accompanied initially by a decrease of conduction and, eventually, a conduction block in presynaptic terminals of low-threshold afferent fibers. 6. The decreases of VR-EPSP and FSP were also accompanied by the transient appearance of a reflex discharge, triggered by VR-EPSPs of decreased amplitude, and changes of the AFP indicating increased invasion of motoneuron somata by antidromic action potentials. 7. It is suggested that NH4+ depolarizes intraspinal Ia-afferent fibers and motoneurons. This depolarization initially decreases and then blocks conduction of action potentials into the presynaptic terminals of Ia-afferent fibers. The conduction block prevents the release of excitatory transmitter and decreases excitatory synaptic transmission. 8. The suggested depolarizing action of NH4+ may be due to K+-like ionic properties of NH4+ and/or an inhibition of K+-uptake into astrocytes. 9. The conduction block in presynaptic terminals of low-threshold afferent fibers can fully explain the decrease of excitatory synaptic transmission by NH4+. Because of the conduction block in presynaptic terminals, this study does not permit a conclusion as to an inhibition by NH4+ fo the utilization of glutamine as a precursor for glutamate used as synaptic transmitter.


Sign in / Sign up

Export Citation Format

Share Document