scholarly journals First-order spectra with one binary predicate

1996 ◽  
Vol 160 (1-2) ◽  
pp. 305-320 ◽  
Author(s):  
Arnaud Durand ◽  
Solomampionona Ranaivoson
Keyword(s):  
1939 ◽  
Vol 4 (1) ◽  
pp. 1-9 ◽  
Author(s):  
László Kalmár

1. Although the decision problem of the first order predicate calculus has been proved by Church to be unsolvable by any (general) recursive process, perhaps it is not superfluous to investigate the possible reductions of the general problem to simple special cases of it. Indeed, the situation after Church's discovery seems to be analogous to that in algebra after the Ruffini-Abel theorem; and investigations on the reduction of the decision problem might prepare the way for a theory in logic, analogous to that of Galois.It has been proved by Ackermann that any first order formula is equivalent to another having a prefix of the form(1) (Ex1)(x2)(Ex3)(x4)…(xm).On the other hand, I have proved that any first order formula is equivalent to some first order formula containing a single, binary, predicate variable. In the present paper, I shall show that both results can be combined; more explicitly, I shall prove theTheorem. To any given first order formula it is possible to construct an equivalent one with a prefix of the form (1) and a matrix containing no other predicate variable than a single binary one.2. Of course, this theorem cannot be proved by a mere application of the Ackermann reduction method and mine, one after the other. Indeed, Ackermann's method requires the introduction of three auxiliary predicate variables, two of them being ternary variables; on the other hand, my reduction process leads to a more complicated prefix, viz.,(2) (Ex1)…(Exm)(xm+1)(xm+2)(Exm+3)(Exm+4).


1984 ◽  
Vol 49 (4) ◽  
pp. 1262-1267
Author(s):  
Nobuyoshi Motohashi

Let L be a first order predicate calculus with equality which has a fixed binary predicate symbol <. In this paper, we shall deal with quantifiers Cx, ∀x ≦ y, ∃x ≦ y defined as follows: CxA(x) is ∀y∃x(y ≦ x ∧ A(x)), ∀x ≦ yA{x) is ∀x(x ≦ y ⊃ A(x)), and ∃x ≦ yA(x) is ∃x(x ≦ y ∧ 4(x)). The expressions x̄, ȳ, … will be used to denote sequences of variables. In particular, x̄ stands for 〈x1, …, xn〉 and ȳ stands for 〈y1,…, ym〉 for some n, m. Also ∃x̄, ∀x̄ ≦ ȳ, … will be used to denote ∃x1 ∃x2 … ∃xn, ∀x1 ≦ y1 ∀x2 ≦ y2 … ∀xn ≦ yn, …, respectively. Let X be a set of formulas in L such that X contains every atomic formula and is closed under substitution of free variables and applications of propositional connectives ¬(not), ∧(and), ∨(or). Then, ∑(X) is the set of formulas of the form ∃x̄B(x̄), where B ∈ X, and Φ(X) is the set of formulas of the form.Since X is closed under ∧, ∨, the two sets Σ(X) and Φ(X) are closed under ∧, ∨ in the following sense: for any formulas A and B in Σ(X) [Φ(X)], there are formulas in Σ(X)[ Φ(X)] which are obtained from A ∧ B and A ∨ B by bringing some quantifiers forward in the usual manner.


Author(s):  
Arnaud Durand ◽  
Solomampionona Ranaivoson
Keyword(s):  

1993 ◽  
Vol 58 (3) ◽  
pp. 800-823 ◽  
Author(s):  
D. M. Gabbay ◽  
V. B. Shehtman

The interest in fragments of predicate logics is motivated by the well-known fact that full classical predicate calculus is undecidable (cf. Church [1936]). So it is desirable to find decidable fragments which are in some sense “maximal”, i.e., which become undecidable if they are “slightly” extended. Or, alternatively, we can look for “minimal” undecidable fragments and try to identify the vague boundary between decidability and undecidability. A great deal of work in this area concerning mainly classical logic has been done since the thirties. We will not give a complete review of decidability and undecidability results in classical logic, referring the reader to existing monographs (cf. Suranyi [1959], Lewis [1979], and Dreben, Goldfarb [1979]). A short summary can also be found in the well-known book Church [1956]. Let us recall only several facts. Herein we will consider only logics without functional symbols, constants, and equality.(C1) The fragment of the classical logic with only monadic predicate letters is decidable (cf. Behmann [1922]).(C2) The fragment of the classical logic with a single binary predicate letter is undecidable. (This is a consequence of Gödel [1933].)(C3) The fragment of the classical logic with a single individual variable is decidable; in fact it is equivalent to Lewis S5 (cf. Wajsberg [1933]).(C4) The fragment of the classical logic with two individual variables is decidable (Segerberg [1973] contains a proof using modal logic; Scott [1962] and Mortimer [1975] give traditional proofs.)(C5) The fragment of the classical logic with three individual variables and binary predicate letters is undecidable (cf. Surańyi [1943]). In fact this paper considers formulas of the following typeφ,ψ being quantifier-free and the set of binary predicate letters which can appear in φ or ψ being fixed and finite.


2002 ◽  
Vol 8 (3) ◽  
pp. 348-379 ◽  
Author(s):  
Robin Hirsch ◽  
Ian Hodkinson ◽  
Roger D. Maddux

AbstractFor every finite n ≥ 4 there is a logically valid sentence φn with the following properties: φn contains only 3 variables (each of which occurs many times); φn contains exactly one nonlogical binary relation symbol (no function symbols, no constants, and no equality symbol); φn has a proof in first-order logic with equality that contains exactly n variables, but no proof containing only n − 1 variables. This result was first proved using the machinery of algebraic logic developed in several research monographs and papers. Here we replicate the result and its proof entirely within the realm of (elementary) first-order binary predicate logic with equality. We need the usual syntax, axioms, and rules of inference to show that φn has a proof with only n variables. To show that φn has no proof with only n − 1 variables we use alternative semantics in place of the usual, standard, set-theoretical semantics of first-order logic.


2020 ◽  
Vol 35 ◽  
Author(s):  
Mark Locher ◽  
Kathryn B. Laskey ◽  
Paulo C. G. Costa

Abstract First-order expressive capabilities allow Bayesian networks (BNs) to model problem domains where the number of entities, their attributes, and their relationships can vary significantly between model instantiations. First-order BNs are well-suited for capturing knowledge representation dependencies, but literature on design patterns specific to first-order BNs is few and scattered. To identify useful patterns, we investigated the range of dependency models between combinations of random variables (RVs) that represent unary attributes, functional relationships, and binary predicate relationships. We found eight major patterns, grouped into three categories, that cover a significant number of first-order BN situations. Selection behavior occurs in six patterns, where a relationship/attribute identifies which entities in a second relationship/attribute are applicable. In other cases, certain kinds of embedded dependencies based on semantic meaning are exploited. A significant contribution of our patterns is that they describe various behaviors used to establish the RV’s local probability distribution. Taken together, the patterns form a modeling framework that provides significant insight into first-order expressive BNs and can reduce efforts in developing such models. To the best of our knowledge, there are no comprehensive published accounts of such patterns.


1950 ◽  
Vol 15 (3) ◽  
pp. 161-173 ◽  
Author(s):  
László Kalmár ◽  
János Surányi

It has been proved by Pepis that any formula of the first-order predicate calculus is equivalent (in respect of being satisfiable) to another with a prefix of the formcontaining a single existential quantifier. In this paper, we shall improve this theorem in the like manner as the Ackermann and the Gödel reduction theorems have been improved in the preceding papers of the same main title. More explicitly, we shall prove theTheorem 1. To any given first-order formula it is possible to construct an equivalent one with a prefix of the form (1) and a matrix containing no other predicate variable than a single binary one.An analogous theorem, but producing a prefix of the formhas been proved in the meantime by Surányi; some modifications in the proof, suggested by Kalmár, led to the above form.


1965 ◽  
Vol 30 (3) ◽  
pp. 293-294 ◽  
Author(s):  
Alexander Abian ◽  
Samuel Lamacchia

In this paper we prove:Theorem 1. Any finite model of the axiom of power-set also satisfies the axioms of extensionality, sum-set and choice.Clearly, it will follow from (2) below that in a finite model the axiom of power-set is satisfied if and only if every set is a power-set. Thus, Theorem 1 follows immediately from Theorem 2 below, where by a theory of sets we mean a first-order theory without identity and with only one binary predicate symbol ∈.Theorem 2. If in a theory of sets every set is a power-set and if the axiom of power-set is valid, then the axioms of extensionality, sum-set and choice are valid.The proof of Theorem 2 will follow from the lemmas which we establish below.We mean by x = y that x and y have the same elements. We denote a power-set of x by P(x) when it exists; similarly, we denote a sum-set of x by Ux.Clearly, in every theory of sets we have:(1) (x ⊂ y) ↔ (P(x) ⊂ P(y)),(2) (x = y) ↔ (P(x) = P(y)),(3) (x = y) → ((x ∈ P(z)) → (y ∈ P(z))),(4) ⋃P(x) = x.In view of (2), (3) and the definition of equality, we have:Lemma 1. If in a theory of sets every set is a power-set, then equal sets are elements of the same sets.We have also, in view of (4):Lemma 2. If in a theory of sets every set is a power-set, then every set has a sum-set.


1976 ◽  
Vol 41 (2) ◽  
pp. 436-438 ◽  
Author(s):  
J. F. A. K. van Benthem

In this paper we prove that if L is a set of modal propositional formulas then FR(L) (the class of all frames in which every formula of L holds) is elementary, Δ-elementary or not ΣΔ-elementary. For single modal formulas the second of these cases does not occur.The model theoretic terminology and results used here are from [1]. (The underlying first order language contains only one, binary, predicate letter in addition to the identity symbol.) We presuppose familiarity with the usual notions and notations of propositional modal logic. A structure for our first order language is called a frame. (So a frame is an ordered couple 〈W, R〉 with domain W and R a binary predicate on W, i.e. a subset of W × W.) A valuation V on F is a function from the set of proposition letters to the power set of W. Using the well-known Kripke truth definition V can be extended to a function from the set of all modal propositional formulas to the power set of W. A modal propositional formula φ holds in a frame F (= 〈W, R〉) if, for all V on F, V(φ) = W. Notation: FR(φ) for the class of all frames in which φ holds. For a set L of modal propositional formulas we define FR(L) as ⋂φ∈LFR(φ). Obviously both FR(L) and cFR(L) (the complement of FR(L)) are closed under isomorphisms.


1986 ◽  
Vol 51 (4) ◽  
pp. 1022-1028
Author(s):  
Nobuyoshi Motohashi

One of the typical preservation theorems in a first order classical predicate logic with equality L is the following theorem due to J. Łoś [4] and A. Tarski [9] (also cf. [1, p. 139]).Theorem A (Łoś-Tarski). For any sentences A and B in L, the following two conditions (i) and (ii) are equivalent.(i) Every extension of any model of A is a model of B.(ii) The two sentences A ⊃ C and C ⊃ B are provable in L for some existential sentence C in L.In [2], S. Feferman obtained a similar preservation theorem for outer extensions. In the following, we assume that L has a fixed binary predicate symbol <. Then Σ-formulas are formulas in L which are constructed from atomic formulas and their negations by applying ∧ (conjunctions), ∨ (disjunctions), ∀x < y (bounded universal quantifications), and ∃ (existential quantifications). An extension of an L-structure is said to be an outer extension of if ⊨ a < b and b ϵ ∣∣ imply a ϵ ∣∣ for any elements a, b in ∣∣.Theorem B (Feferman). For any sentences A and B in L, the following two conditions (i) and (ii) are equivalent.(i) Every outer extension of any model of A is a model of B.(ii) The two sentences A ⊃ C and C ⊃ B are provable in L for some Σ-sentence C in L.


Sign in / Sign up

Export Citation Format

Share Document