scholarly journals A central limit theorem for mixing stationary point processes

1978 ◽  
Vol 8 (2) ◽  
pp. 229-242 ◽  
Author(s):  
R.M. Cranwell ◽  
N.A. Weiss
Author(s):  
Leonid V Bogachev ◽  
Zhonggen Su

We obtain the central limit theorem for fluctuations of Young diagrams around their limit shape in the bulk of the ‘spectrum’ of partitions λ ⊢ n ∈ (under the Plancherel measure), thus settling a long-standing problem posed by Logan & Shepp. Namely, under normalization growing like , the corresponding random process in the bulk is shown to converge, in the sense of finite-dimensional distributions, to a Gaussian process with independent values, while local correlations in the vicinity of each point, measured on various power scales, possess certain self-similarity. The proofs are based on the Poissonization techniques and use Costin–Lebowitz–Soshnikov's central limit theorem for determinantal random point processes. Our results admit a striking reformulation after the rotation of Young diagrams by 45°, whereby the normalization no longer depends on the location in the spectrum. In addition, we explain heuristically the link with an earlier result by Kerov on the convergence to a generalized Gaussian process.


2008 ◽  
Vol DMTCS Proceedings vol. AI,... (Proceedings) ◽  
Author(s):  
J. E. Yukich

International audience We provide an overview of stabilization methods for point processes and apply these methods to deduce a central limit theorem for statistical estimators of dimension.


2008 ◽  
Vol 40 (3) ◽  
pp. 759-797 ◽  
Author(s):  
Xin Qi

We give a functional central limit theorem for spatial birth and death processes based on the representation of such processes as solutions of stochastic equations. For any bounded and integrable function in Euclidean space, we define a family of processes which is obtained by integrals of this function with respect to the centered and scaled spatial birth and death process with constant death rate. We prove that this family converges weakly to a Gaussian process as the scale parameter goes to infinity. We do not need the birth rates to have a finite range of interaction. Instead, we require that the birth rates have a range of interaction that decays polynomially. In order to show the convergence of the finite-dimensional distributions of the above processes, we extend Penrose's multivariate spatial central limit theorem. An example of the asymptotic normalities of the time-invariance estimators for the birth rates of spatial point processes is given.


2008 ◽  
Vol 40 (03) ◽  
pp. 759-797
Author(s):  
Xin Qi

We give a functional central limit theorem for spatial birth and death processes based on the representation of such processes as solutions of stochastic equations. For any bounded and integrable function in Euclidean space, we define a family of processes which is obtained by integrals of this function with respect to the centered and scaled spatial birth and death process with constant death rate. We prove that this family converges weakly to a Gaussian process as the scale parameter goes to infinity. We do not need the birth rates to have a finite range of interaction. Instead, we require that the birth rates have a range of interaction that decays polynomially. In order to show the convergence of the finite-dimensional distributions of the above processes, we extend Penrose's multivariate spatial central limit theorem. An example of the asymptotic normalities of the time-invariance estimators for the birth rates of spatial point processes is given.


Sign in / Sign up

Export Citation Format

Share Document