Human endothelial cells produce a plasminogen activator inhibitor and a tissue-type plasminogen activator-inhibitor complex

1984 ◽  
Vol 802 (1) ◽  
pp. 99-110 ◽  
Author(s):  
Malou Philips ◽  
Anne-Grethe Juul ◽  
Sixtus Thorsen
1990 ◽  
Vol 110 (1) ◽  
pp. 155-163 ◽  
Author(s):  
R R Schleef ◽  
T J Podor ◽  
E Dunne ◽  
J Mimuro ◽  
D J Loskutoff

The interactions between exogenously added tissue-type plasminogen activator (t-PA) and the active form of type 1 plasminogen activator inhibitor (PAI-1) produced by and present in cultured human umbilical vein endothelial cells (HUVECs) were investigated. Immunoblotting analysis of the conditioned media obtained from monolayers of HUVECs treated with increasing concentrations of t-PA (less than or equal to 10 micrograms/ml) revealed a dose-dependent formation of both t-PA/PAI-1 complexes, and of a 42,000-Mr cleaved or modified form of the inhibitor. Immunoradiometric assays indicated that t-PA treatment resulted in a fourfold increase in PAI-1 antigen present in the conditioned media. This increase did not result from the release of PAI-1 from intracellular stores, but rather reflected a t-PA-dependent decrease in the PAI-1 content of the Triton X-100 insoluble extracellular matrix (ECM). Although the rate of t-PA-mediated release of PAI-1 was increased by the removal of the monolayer, similar quantities of PAI-1 were removed in the presence or absence of the cells. These results suggest that the cells only represent a semipermeable barrier between ECM-associated PAI-1 and exogenous t-PA. Treatment of HUVECs with t-PA (1 microgram/ml, 2 h) to deplete the ECM of PAI-1 did not affect the subsequent rate of PAI-1 production and deposition into the ECM. Immunogold electron microscopy of HUVECs not only confirmed the location of PAI-1 primarily in the region between the culture substratum and ventral cell surface but failed to demonstrate significant (less than 1%) PAI-1 on the cell surface. Thus, the majority of PAI-1 associated with cultured HUVEC monolayers is present under the cells in the ECM and is accessible to solution-phase t-PA.


1986 ◽  
Vol 239 (3) ◽  
pp. 497-503 ◽  
Author(s):  
T Kooistra ◽  
E D Sprengers ◽  
V W van Hinsbergh

In conditioned medium (CM) from cultured human endothelial cells, two forms of plasminogen-activator inhibitor (PA-inhibitor) can be demonstrated: a fast-acting active form and an immunologically related, inactive form. Evidence is presented that endothelial cells produce active PA-inhibitor which is rapidly inactivated upon secretion into the medium. This inactivation can, at least partly, be prevented by culturing cells with excess of tissue-type plasminogen activator (t-PA). This results in the formation of large amounts of t-PA-PA-inhibitor complex at the cost of accumulation of inactive PA-inhibitor. No complex was detectable when inactive PA-inhibitor preparations were incubated with t-PA either in the absence or in the presence of cells. Furthermore, in cell extracts, predominantly functionally active PA-inhibitor was present. PA-inhibitor derived from the t-PA-PA-inhibitor complex showed an Mr approx. 4000 lower by polyacrylamide-gel electrophoresis than that of the inactive form. The rapid inactivation seems to be confined to newly synthesized molecules, since PA-inhibitor molecules in CM are inactivated much more slowly (even with cells or cell homogenates) than necessary to explain the excessive production of inactivated PA-inhibitor by cells. It could not be prevented by inhibitors of oxidative processes, like butylated hydroxytoluene, dithiothreitol, superoxide dismutase and catalase.


Sign in / Sign up

Export Citation Format

Share Document