Involvement of alcohol dehydrogenase in the enhancement of the in vivo nitrate reductase activity of root tissue by propanol

1983 ◽  
Vol 30 (1) ◽  
pp. 25-32 ◽  
Author(s):  
A.P. Aryan ◽  
W. Wallace
1978 ◽  
Vol 58 (2) ◽  
pp. 283-285 ◽  
Author(s):  
D. G. PATRIQUIN ◽  
J. C. MacKINNON ◽  
K. I. WILKIE

Denitrification in soil around the bases of corn stalks, determined by the "acetylene blockage technique," exhibited a general trend of decline from June to September. Leaf nitrate reductase activity, determined by an in vivo assay procedure, was low in June and July, and then exhibited a pronounced maximum at the time of tasselling.


2015 ◽  
Vol 38 (4) ◽  
pp. 309-311
Author(s):  
Priyanshu Sharma ◽  
S.P. Chaukiyal ◽  
Meenu Sengar

The combination of different substrate concentrations (0.05M, 0.10M, 0.15M, 0.20M and 0.25M, KNO3) with different pH of phosphate buffer (0.10 M and 0.20 M, KH2PO4 of the pH 7.0, 7.5, 7.6, 7.7, and 7.8) solutions were tried for in-vivo nitrate reductase activity of Adenanthera microsperma leaves. Maximum nitrate reductase activity was observed in the combination of buffer solution (0.20M KH2PO4) having pH 7.7 and substrate solution 0.20 M concentration.


1978 ◽  
Vol 56 (13) ◽  
pp. 1540-1544 ◽  
Author(s):  
Albert C. Purvis

Two cultivars of soybeans (Glycine max (L.) Merr.) differing widely in their resistance to ozone were exposed to 0.5 μl/ℓ ozone for 2 h in growth chambers. In vivo nitrate reduction was depressed by more than 50% in the primary leaves of Dare, the ozone-sensitive cultivar, but was not significantly altered in Hood, the ozone-resistant cultivar. Sucrose, up to 1.5% (w/v), added to excised seedlings of the Dare cultivar during exposure to ozone eliminated the ozone depression of in vivo nitrate reductase activity and also reduced foliar injury. Addition of two glycolytic intermediates, glyceraldehyde-3-phosphate and fructose-1,6-diphosphate, to the infiltration medium recovered some in vivo nitrate reduction in treated Dare leaves. The levels of extractable nitrate reductase and glyceraldehyde-3-phosphate dehydrogenase in the primary leaves of both cultivars were unaltered by ozone fumigations. These observations led to the conclusion that ozone depression of in vivo nitrate reduction is not due to ozone inactivation of nitrate reductase or of the enzymes coupling nitrate reduction to glycolysis, but may be caused by an inadequate supply of photosynthetic sugars. It was also noted that ozone depression of in vivo nitrate reduction only occurred with treatments which subsequently caused the development of visible foliar injury.


2015 ◽  
Vol 42 (3) ◽  
pp. 431-439 ◽  
Author(s):  
J. S. Knypl

Cotyledons were excised from 5-day old etiolated cucumber seedlings and .grown for 24 or 48 h in solutions of plant growth retardants: AMO-1618,B-Nine, CCC and phosfon D, supplemented with KNO<sub>3</sub> (10<sup>-2</sup>M) in light. Nitrate reductase (NR) activity was determined <i>in vivo</i>. CCC and Phosfon D at high concentrations had no effect on nitrate reductase activity in 24 h tests. CCC at 5xl0<sup>-2</sup> M enhanced NR activity in longer 48 h tests; Phosfon D was inhibitory in that case. AMO-1618 markedly decreased NR activity. B-Nine strikingly enhanced NR activity in KNO<sub>3</sub> induced cytoledons; the effect was positively correlated with the concentration of B-Nine. Ali the compounds inhibited chlorophyll synthesis.


1999 ◽  
Vol 8 (1) ◽  
pp. 37-40 ◽  
Author(s):  
B. K. Salalkar ◽  
R. S. Shaikh ◽  
R. M. Naik ◽  
S. V. Munjal ◽  
B. B. Desai ◽  
...  

2004 ◽  
Vol 61 (6) ◽  
pp. 640-648 ◽  
Author(s):  
Jairo Osvaldo Cazetta ◽  
Luciana Cristine Vasques Villela

Tanner grass (Brachiaria radicans Napper) is a forage plant that is adapted to well-drained soils or wetlands, and responds well to nitrogen (N) fertilization. The assimilation of N involves the nitrate reductase (NR) enzyme, and its activity seems to be dependent on N supply. Molybdenum (Mo) is also important because it is a cofactor of NR. In this study, the variables of an in vivo assay were optimized for measuring nitrate reductase activity (NRA) in the leaves and stem tissues. This method was used to evaluate NO3- metabolism in plants fertilized with NaNO3, NH4Cl or urea, in association with or without application of H2MoO4, aiming to provide guidelines for N management of this species. The best conditions to determine NRA involved the incubation of 300 mg of tissues in a medium composed of 200 mmol dm3 phosphate buffer (pH 7.4), 60 mmol dm3 KNO3, 10 cm³ dm3 n-butanol, 0.1 cm³ dm3 detergent (triton-X-100®), under vacuum and in the dark for a period of 60 to 100 minutes. Leaves showed NRA levels two to three times higher than stems. Although there were some interactions between treatments, stem fresh weight and NRA were not affected by N sources. Plants fertilized with NaNO3 showed the best growth and NRA values when compared with NH4Cl and urea, which had, respectively, the lowest and intermediate scores. The application of Mo in the absence of N improved NRA and did not affect leaf and stalk growth. In the presence of N, the Mo levels applied limited leaf NRA and plant development.


Sign in / Sign up

Export Citation Format

Share Document