Cell junctions and intramembrane particles of astrocytes and oligodendrocytes: A freeze-fracture study

Neuroscience ◽  
1982 ◽  
Vol 7 (2) ◽  
pp. 523-538 ◽  
Author(s):  
P.T. Masa ◽  
E. Mugnaini
1988 ◽  
Vol 255 (3) ◽  
pp. H467-H475 ◽  
Author(s):  
J. S. Frank ◽  
S. Beydler ◽  
N. Wheeler ◽  
K. I. Shine

Freeze-fracture electron microscopy permits the visualization of the intramembrane particles (IMP). These IMPs are presumably proteins responsible for the main functions of the membrane. Quantitative techniques (Clark-Evan statistics) were applied to determine in a critical manner whether IMP pattern shifts (random, clustered, or ordered) occur under the ischemic conditions (5-45 min with and without reperfusion) and whether this change is related to the experimental condition. In each case three hearts, eight replicas/heart, one area of 0.25 micron 2 of membrane fracture face/replica was measured to give a total of 6 micron 2 of membrane counted for each condition (control vs. ischemic). A mixed effects nested model analysis of variance was performed in each variable. We found that IMP aggregation can be present in some control membranes, but the degree of aggregation was greater and more consistent in membranes made ischemic and followed by reperfusion. Most striking was the significant clustering of IMPs in membranes from hearts ischemic for only 5 min. Reperfusion after only 5 min of ischemia reversed IMP clustering. Functionally at this time there is an increase in K+ concentration in the interstitial space that reaches approximately 15 mM within 10 min and reverses on reperfusion. The structural alteration in IMPs appears to parallel the function in ischemic hearts.


1981 ◽  
Vol 91 (1) ◽  
pp. 55-62 ◽  
Author(s):  
M Aikawa ◽  
L H Miller ◽  
J R Rabbege ◽  
N Epstein

Invasion of erythrocytes by malarial merozoites requires the formation of a junction between the merozoite and the erythrocyte. Migration of the junction parallel to the long axis of the merozoite occurs during the entry of the merozoite into an invagination of the erythrocyte. Freeze-fracture shows a narrow circumferential band of rhomboidally arrayed particles on the P face of the erythrocyte membrane at the neck of the erythrocyte invagination and matching rhomboidally arrayed pits on the E face. The band corresponds to the junction between the erythrocyte and merozoite membranes observed in thin sections and may represent the anchorage sites of the contractile proteins within the erythrocyte. Intramembrane particles (IMP) on the P face of the erythrocyte membrane disappear beyond this junction. When the erythrocytes and cytochalasin B-treated merozoites are incubated together, the merozoite attaches to the erythrocyte membrane and a junction is formed between the two, but the invasion process does not advance further and no movement of the junction occurs. Although there is no entry of the parasite, the erythrocyte membrane still invaginates. Freeze-fracture shows that the P face of the invaginated erythrocyte membrane is almost devoid of the IMP that are found elsewhere on the membrane, suggesting that the attachment process in and of itself is sufficient to create a relatively IMP-free bilayer.


1987 ◽  
Vol 19 (3) ◽  
pp. 399-411 ◽  
Author(s):  
N.J. Lane ◽  
R. Dallai ◽  
G.B. Martinucci ◽  
P. Burighel

1978 ◽  
Vol 78 (2) ◽  
pp. 542-553 ◽  
Author(s):  
D T Theodosis ◽  
J J Dreifuss ◽  
L Orci

Freeze-fracture was used to study the membrane events taking place during neurosecretory granule discharge (exocytosis) and subsequent membrane internalization (endocytosis) in axons of neurohypophyses from control and water-deprived rats. En face views of the cytoplasmic leaflet (P face) of the split axolemma reveal circular depressions that represent the secretory granule membranes fused with the plasma membrane during exocytosis. These depressions often contain granule core material in the process of extrusion into the extracellular space. The membrane surrounding some of the exocytotic openings shows a decreased number of intramembrane particles (mean diameter, 8 nm) which are elsewhere more numerous and evenly distrubuted on the fracture face. Endocytotic sites appear as smaller plasma membrane invaginations, with associated intramembrane particles. Moreover, such invaginations often contain large particles (mean diameter, 12 nm) that appear as clusters on en face views of the membrane leaflet. Quantitative analysis indicates that the number of exocytotic images increases significantly in glands from water-deprived rats. Concomitantly, the number of endocytotic figures per unit area of membrane is raised as is the number of clusters of large particles. The observations demonstrate that, in the neurohypophysis, it is possible to distinguish exocytosis morphologically from endocytosis and that the two events can be assessed quantitatively.


In Vitro ◽  
1978 ◽  
Vol 14 (11) ◽  
pp. 916-923 ◽  
Author(s):  
Rita Meyer ◽  
Zoltan Posalaky ◽  
Dennis McGinley

Sign in / Sign up

Export Citation Format

Share Document