fracture electron
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 4)

H-INDEX

39
(FIVE YEARS 1)

2021 ◽  
Vol 220 (3) ◽  
Author(s):  
Minami Orii ◽  
Takuma Tsuji ◽  
Yuta Ogasawara ◽  
Toyoshi Fujimoto

The mechanism of isolation membrane formation in autophagy is receiving intensive study. We recently found that Atg9 translocates phospholipids across liposomal membranes and proposed that this functionality plays an essential role in the expansion of isolation membranes. The distribution of phosphatidylinositol 3-phosphate in both leaflets of yeast autophagosomal membranes supports this proposal, but if Atg9-mediated lipid transport is crucial, symmetrical distribution in autophagosomes should be found broadly for other phospholipids. To test this idea, we analyzed the distributions of phosphatidylcholine, phosphatidylserine, and phosphatidylinositol 4-phosphate by freeze-fracture electron microscopy. We found that all these phospholipids are distributed with comparable densities in the two leaflets of autophagosomes and autophagic bodies. Moreover, de novo–synthesized phosphatidylcholine is incorporated into autophagosomes preferentially and shows symmetrical distribution in autophagosomes within 30 min after synthesis, whereas this symmetrical distribution is compromised in yeast expressing an Atg9 mutant. These results indicate that transbilayer phospholipid movement that is mediated by Atg9 is involved in the biogenesis of autophagosomes.


2020 ◽  
Vol 21 (14) ◽  
pp. 4960
Author(s):  
Samuel Zapién-Castillo ◽  
Nancy P. Díaz-Zavala ◽  
José A. Melo-Banda ◽  
Duncan Schwaller ◽  
Jean-Philippe Lamps ◽  
...  

Some organic compounds are known to self-assemble into nanotubes in solutions, but the packing of the molecules into the walls of the tubes is known only in a very few cases. Herein, we study two compounds forming nanotubes in alkanes. They bear a secondary alkanamide chain linked to a benzoic acid propyl ester (HUB-3) or to a butyl ester (HUB-4). They gel alkanes for concentrations above 0.2 wt.%. The structures of these gels, studied by freeze fracture electron microscopy, exhibit nanotubes: for HUB-3 their external diameters are polydisperse with a mean value of 33.3 nm; for HUB-4, they are less disperse with a mean value of 25.6 nm. The structure of the gel was investigated by small- and wide-angle X-ray scattering. The evolution of the intensities show that the tubes are metastable and transit slowly toward crystals. The intensities of the tubes of HUB-4 feature up to six oscillations. The shape of the intensities proves the tubular structure of the aggregates, and gives a measurement of 20.6 nm for the outer diameters and 11.0 nm for the inner diameters. It also shows that the electron density in the wall of the tubes is heterogeneous and is well described by a model with three layers.


2019 ◽  
Vol 116 (27) ◽  
pp. 13368-13373 ◽  
Author(s):  
Takuma Tsuji ◽  
Jinglei Cheng ◽  
Tsuyako Tatematsu ◽  
Aoi Ebata ◽  
Hiroki Kamikawa ◽  
...  

TMEM16K, a membrane protein carrying 10 transmembrane regions, has phospholipid scramblase activity. TMEM16K is localized to intracellular membranes, but whether it actually scrambles phospholipids inside cells has not been demonstrated, due to technical difficulties in studying intracellular lipid distributions. Here, we developed a freeze-fracture electron microscopy method that enabled us to determine the phosphatidylserine (PtdSer) distribution in the individual leaflets of cellular membranes. Using this method, we found that the endoplasmic reticulum (ER) of mammalian cells harbored abundant PtdSer in its cytoplasmic leaflet and much less in the luminal leaflet, whereas the outer and inner nuclear membranes (NMs) had equivalent amounts of PtdSer in both leaflets. The ER and NMs of budding yeast also harbored PtdSer in their cytoplasmic leaflet, but asymmetrical distribution in the ER was not observed. Treating mouse embryonic fibroblasts with the Ca2+ionophore A23187 compromised the cytoplasmic leaflet-dominant PtdSer asymmetry in the ER and increased PtdSer in the NMs, especially in the nucleoplasmic leaflet of the inner NM. This Ca2+-induced PtdSer redistribution was not observed in TMEM16K-null fibroblasts, but was recovered in these cells by reexpressing TMEM16K. These results indicate that, similar to the plasma membrane, PtdSer in the ER of mammalian cells is predominantly localized to the cytoplasmic leaflet, and that TMEM16K directly or indirectly mediates Ca2+-dependent phospholipid scrambling in the ER.


2017 ◽  
Vol 150 (2) ◽  
pp. 293-306 ◽  
Author(s):  
Alexander Polster ◽  
Stefano Perni ◽  
Dilyana Filipova ◽  
Ong Moua ◽  
Joshua D. Ohrtman ◽  
...  

The type 1 ryanodine receptor (RyR1) in skeletal muscle is a homotetrameric protein that releases Ca2+ from the sarcoplasmic reticulum (SR) in response to an “orthograde” signal from the dihydropyridine receptor (DHPR) in the plasma membrane (PM). Additionally, a “retrograde” signal from RyR1 increases the amplitude of the Ca2+ current produced by CaV1.1, the principle subunit of the DHPR. This bidirectional signaling is thought to depend on physical links, of unknown identity, between the DHPR and RyR1. Here, we investigate whether the isolated cytoplasmic domain of RyR1 can interact structurally or functionally with CaV1.1 by producing an N-terminal construct (RyR11:4300) that lacks the C-terminal membrane domain. In CaV1.1-null (dysgenic) myotubes, RyR11:4300 is diffusely distributed, but in RyR1-null (dyspedic) myotubes it localizes in puncta at SR–PM junctions containing endogenous CaV1.1. Fluorescence recovery after photobleaching indicates that diffuse RyR11:4300 is mobile, whereas resistance to being washed out with a large-bore micropipette indicates that the punctate RyR11:4300 stably associates with PM–SR junctions. Strikingly, expression of RyR11:4300 in dyspedic myotubes causes an increased amplitude, and slowed activation, of Ca2+ current through CaV1.1, which is almost identical to the effects of full-length RyR1. Fast protein liquid chromatography indicates that ∼25% of RyR11:4300 in diluted cytosolic lysate of transfected tsA201 cells is present in complexes larger in size than the monomer, and intermolecular fluorescence resonance energy transfer implies that RyR11:4300 is significantly oligomerized within intact tsA201 cells and dyspedic myotubes. A large fraction of these oligomers may be homotetramers because freeze-fracture electron micrographs reveal that the frequency of particles arranged like DHPR tetrads is substantially increased by transfecting RyR-null myotubes with RyR11:4300. In summary, the RyR1 cytoplasmic domain, separated from its SR membrane anchor, retains a tendency toward oligomerization/tetramerization, binds to SR–PM junctions in myotubes only if CaV1.1 is also present and is fully functional in retrograde signaling to CaV1.1.


2017 ◽  
Vol 114 (52) ◽  
pp. 13822-13827 ◽  
Author(s):  
Stefano Perni ◽  
Manuela Lavorato ◽  
Kurt G. Beam

Skeletal muscle contraction is triggered by Ca2+ release from the sarcoplasmic reticulum (SR) in response to plasma membrane (PM) excitation. In vertebrates, this depends on activation of the RyR1 Ca2+ pore in the SR, under control of conformational changes of CaV1.1, located ∼12 nm away in the PM. Over the last ∼30 y, gene knockouts have revealed that CaV1.1/RyR1 coupling requires additional proteins, but leave open the possibility that currently untested proteins are also necessary. Here, we demonstrate the reconstitution of conformational coupling in tsA201 cells by expression of CaV1.1, β1a, Stac3, RyR1, and junctophilin2. As in muscle, depolarization evokes Ca2+ transients independent of external Ca2+ entry and having amplitude with a saturating dependence on voltage. Moreover, freeze-fracture electron microscopy indicates that the five identified proteins are sufficient to establish physical links between CaV1.1 and RyR1. Thus, these proteins constitute the key elements essential for excitation–contraction coupling in skeletal muscle.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Takuma Tsuji ◽  
Megumi Fujimoto ◽  
Tsuyako Tatematsu ◽  
Jinglei Cheng ◽  
Minami Orii ◽  
...  

Niemann-Pick type C is a storage disease caused by dysfunction of NPC proteins, which transport cholesterol from the lumen of lysosomes to the limiting membrane of that compartment. Using freeze fracture electron microscopy, we show here that the yeast NPC orthologs, Ncr1p and Npc2p, are essential for formation and expansion of raft-like domains in the vacuolar (lysosome) membrane, both in stationary phase and in acute nitrogen starvation. Moreover, the expanded raft-like domains engulf lipid droplets by a microautophagic mechanism. We also found that the multivesicular body pathway plays a crucial role in microautophagy in acute nitrogen starvation by delivering sterol to the vacuole. These data show that NPC proteins promote microautophagy in stationary phase and under nitrogen starvation conditions, likely by increasing sterol in the limiting membrane of the vacuole.


Sign in / Sign up

Export Citation Format

Share Document