Cytology and organization of reactive astroglia in human cerebellar cortex with severe loss of granule cells: A study on the ataxic form of creutzfeldt-jakob disease

Neuroscience ◽  
1991 ◽  
Vol 40 (2) ◽  
pp. 337-352 ◽  
Author(s):  
M. Lafarga ◽  
M.T. Berciano ◽  
I. Suarez ◽  
C.F. Viadero ◽  
M.A. Andres ◽  
...  
2006 ◽  
Vol 24 (6) ◽  
pp. 365-371 ◽  
Author(s):  
Anna Maria Lavezzi ◽  
Giulia Ottaviani ◽  
Lorella Terni ◽  
Luigi Matturri

2021 ◽  
Author(s):  
Chao J. Liu ◽  
William Ammon ◽  
Viviana Siless ◽  
Morgan Fogarty ◽  
Ruopeng Wang ◽  
...  

AbstractThe surface of the human cerebellar cortex is much more tightly folded than the cerebral cortex. Volumetric analysis of cerebellar morphometry in magnetic resonance imaging studies suffers from insufficient resolution, and therefore has had limited impact on disease assessment. Automatic serial polarization-sensitive optical coherence tomography (as-PSOCT) is an emerging technique that offers the advantages of microscopic resolution and volumetric reconstruction of large-scale samples. In this study, we reconstructed multiple cubic centimeters of ex vivo human cerebellum tissue using as-PSOCT. The morphometric and optical properties of the cerebellar cortex across five subjects were quantified. While the molecular and granular layers exhibited similar mean thickness in the five subjects, the thickness varied greatly between the crown of the folium and the depth of the fissure in the granular layer within subjects. Layer-specific optical property remained homogenous within individual subjects but showed higher cross-subject variability than layer thickness. High-resolution volumetric morphometry and optical property maps of human cerebellar cortex revealed by as-PSOCT have great potential to advance our understanding of cerebellar function and diseases.HighlightsWe reconstructed cubic centimeters of human cerebellar samples at micrometer resolution in five subjects.Thickness of the granular layer varies greatly between the crowns and depths of cerebellar fissures.Cross-subject variability is higher in optical property than cortical morphology.Our results suggest homogenous cell and myelin density in the cortical layers of human cerebellum despite the highly convoluted folding patterns.


Neuron ◽  
2016 ◽  
Vol 91 (6) ◽  
pp. 1330-1341 ◽  
Author(s):  
Chong Guo ◽  
Laurens Witter ◽  
Stephanie Rudolph ◽  
Hunter L. Elliott ◽  
Katelin A. Ennis ◽  
...  

2007 ◽  
Vol 97 (1) ◽  
pp. 248-263 ◽  
Author(s):  
Fidel Santamaria ◽  
Patrick G. Tripp ◽  
James M. Bower

Synapses associated with the parallel fiber (pf) axons of cerebellar granule cells constitute the largest excitatory input onto Purkinje cells (PCs). Although most theories of cerebellar function assume these synapses produce an excitatory sequential “beamlike” activation of PCs, numerous physiological studies have failed to find such beams. Using a computer model of the cerebellar cortex we predicted that the lack of PCs beams is explained by the concomitant pf activation of feedforward molecular layer inhibition. This prediction was tested, in vivo, by recording PCs sharing a common set of pfs before and after pharmacologically blocking inhibitory inputs. As predicted by the model, pf-induced beams of excitatory PC responses were seen only when inhibition was blocked. Blocking inhibition did not have a significant effect in the excitability of the cerebellar cortex. We conclude that pfs work in concert with feedforward cortical inhibition to regulate the excitability of the PC dendrite without directly influencing PC spiking output. This conclusion requires a significant reassessment of classical interpretations of the functional organization of the cerebellar cortex.


2014 ◽  
Vol 297 (7) ◽  
pp. 1306-1315 ◽  
Author(s):  
Paolo Flace ◽  
Loredana Lorusso ◽  
Giuliana Laiso ◽  
Anna Rizzi ◽  
Raffaele Cagiano ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document