Comparison of long-term potentiation in the proximal versus distal stratum radiatum of hippocampal field CA1

Neuroscience ◽  
1995 ◽  
Vol 66 (2) ◽  
pp. 277-289 ◽  
Author(s):  
A. Kolta ◽  
J. Larson ◽  
G. Lynch
2003 ◽  
Vol 358 (1432) ◽  
pp. 689-693 ◽  
Author(s):  
Toshiyuki Hosokawa ◽  
Masaki Ohta ◽  
Takeshi Saito ◽  
Alan Fine

Spatio-temporal patterns of neuronal activity before and after the induction of long-term potentiation in mouse hippocampal slices were studied using a real-time high-resolution optical recording system. After staining the slices with voltage-sensitive dye, transmitted light images and extracellular field potentials were recorded in response to stimuli applied to CA1 stratum radiatum. Optical and electrical signals in response to single test pulses were enhanced for at least 30 minutes after brief high-frequency stimulation at the same site. In two-pathway experiments, potentiation was restricted to the tetanized pathway. The optical signals demonstrated that both the amplitude and area of the synaptic response were increased, in patterns not predictable from the initial, pretetanus, pattern of activation. Optical signals will be useful for investigating spatio-temporal patterns of synaptic enhancement underlying information storage in the brain.


2006 ◽  
Vol 26 (33) ◽  
pp. 8428-8440 ◽  
Author(s):  
D. R. Shimshek ◽  
V. Jensen ◽  
T. Celikel ◽  
Y. Geng ◽  
B. Schupp ◽  
...  

2000 ◽  
Vol 83 (1) ◽  
pp. 177-180 ◽  
Author(s):  
Yong-Tao Zhao ◽  
Krešimir Krnjević

In hippocampal slices, temporary (10–20 min) replacement of glucose with 10 mM 2-deoxyglucose is followed by marked and very sustained potentiation of EPSPs (2-DG LTP). To investigate its mechanism, we examined 2-DG's effect in CA1 neurons recorded with sharp 3 M KCl electrodes containing a strong chelator, 50 or 100 mM ethylene glycol-bis(β-aminoethyl ether)- N, N, N′, N′-tetraacetic acid (EGTA). In most cases, field EPSPs were simultaneously recorded and conventional LTP was also elicited in some cells by tetanic stimulation of stratum radiatum. 2-DG potentiated intracellular EPSP slopes by 48 ± 5.1% (SE) in nine cells recorded with plain KCl electrodes and by 52 ± 6.2% in seven cells recorded with EGTA-containing electrodes. In four of the latter cells, tetanic stimulation (twice 100 Hz for 1 s) failed to evoke LTP (2 ± 1.1%), although field EPSPs were clearly potentiated (by 28 ± 6.9%). Thus unlike tetanic LTP, 2-DG LTP is not readily prevented by postsynaptic intraneuronal injection of EGTA. These findings agree with other evidence that the rise in postsynaptic (somatic) [Ca2+]i caused by 2-DG is not the principal trigger for the subsequent 2-DG LTP and that it may be a purely presynaptic phenomenon.


1988 ◽  
Vol 66 (6) ◽  
pp. 841-844 ◽  
Author(s):  
B. R. Sastry ◽  
J. W. Goh ◽  
P. B. Y. May ◽  
S. S. Chirwa

In guinea pig hippocampal slices, stimulation of stratum radiatum during depolarization (with intracellular current injections) of nonspiking cells (presumed to be glia) in the apical dendritic area of CA1 pyramidal neurons resulted in a subsequent long-term potentiation of intracellularly recorded excitatory postsynaptic potentials as well as extracellularly recorded population spikes in the CA1 area. Tetanic stimulation of stratum radiatum resulted in a subsequent prolonged depolarization of the presumed glial cells, and this depolarization was smaller when the tetanus was given during the presence of 2-amino-5-phosphonovalerate or when the slices were exposed to Ca2+-free medium containing Mn2+ and Mg2+. These results suggest that glial depolarization is involved as one of the steps in generating long-term potentiation.


Sign in / Sign up

Export Citation Format

Share Document