Finite temperature self-consistent semiclassical approach to the temperature dependence of properties of hot nuclei

1990 ◽  
Vol 510 (3) ◽  
pp. 557-572 ◽  
Author(s):  
Guo-Qiang Li ◽  
Gong-Ou Xu
2005 ◽  
Vol 127 (4) ◽  
pp. 408-416 ◽  
Author(s):  
H. Jiang ◽  
Y. Huang ◽  
K. C. Hwang

There are significant efforts to develop continuum theories based on atomistic models. These atomistic-based continuum theories are limited to zero temperature (T=0K). We have developed a finite-temperature continuum theory based on interatomic potentials. The effect of finite temperature is accounted for via the local harmonic approximation, which relates the entropy to the vibration frequencies of the system, and the latter are determined from the interatomic potential. The focus of this theory is to establish the continuum constitutive model in terms of the interatomic potential and temperature. We have studied the temperature dependence of specific heat and coefficient of thermal expansion of graphene and diamond, and have found good agreements with the experimental data without any parameter fitting. We have also studied the temperature dependence of Young’s modulus and bifurcation strain of single-wall carbon nanotubes.


2013 ◽  
pp. 93-105
Author(s):  
A. Joy Allen ◽  
Carlo F. Barenghi ◽  
Nick P. Proukakis ◽  
Eugene Zaremba

Sign in / Sign up

Export Citation Format

Share Document