interatomic potentials
Recently Published Documents


TOTAL DOCUMENTS

973
(FIVE YEARS 179)

H-INDEX

69
(FIVE YEARS 10)

2021 ◽  
Author(s):  
Rebecca Lindsey ◽  
Nir Goldman ◽  
Laurence Fried ◽  
Sorin Bastea

There is significant interest in establishing a capability for tailored synthesis of next-generation carbon-based nanomaterials due to their broad range of applications and high degree of tunability. High pressure (e.g. shockwave-driven) synthesis holds promise as an effective discovery method, but experimental challenges preclude elucidating the processes governing nanocarbon production from carbon-rich precursors that could otherwise guide efforts through the prohibitively expansive design space. Here we report findings from large scale atomistically-resolved simulations of carbon condensation from C/O mixtures subjected to extreme pressures and temperatures, made possible by machine-learned reactive interatomic potentials. We find that liquid nanocarbon formation follows classical growth kinetics driven by Ostwald ripening (i.e. growth of large clusters at the expense of shrinking small ones) and obeys dynamical scaling in a process mediated by carbon chemistry in the surrounding reactive fluid. The results provide direct insight into carbon condensation in a representative system and pave the way for its exploration in higher complexity organic materials. They also suggest that simulations using machine-learned interatomic potentials could eventually be employed as in-silico design tools for new nanomaterials.


2021 ◽  
Vol 130 (21) ◽  
pp. 210903 ◽  
Author(s):  
Saeed Arabha ◽  
Zahra Shokri Aghbolagh ◽  
Khashayar Ghorbani ◽  
S. Milad Hatam-Lee ◽  
Ali Rajabpour

2021 ◽  
Vol 200 ◽  
pp. 110752
Author(s):  
Joshua A. Vita ◽  
Dallas R. Trinkle

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tongqi Wen ◽  
Rui Wang ◽  
Lingyu Zhu ◽  
Linfeng Zhang ◽  
Han Wang ◽  
...  

AbstractLarge scale atomistic simulations provide direct access to important materials phenomena not easily accessible to experiments or quantum mechanics-based calculation approaches. Accurate and efficient interatomic potentials are the key enabler, but their development remains a challenge for complex materials and/or complex phenomena. Machine learning potentials, such as the Deep Potential (DP) approach, provide robust means to produce general purpose interatomic potentials. Here, we provide a methodology for specialising machine learning potentials for high fidelity simulations of complex phenomena, where general potentials do not suffice. As an example, we specialise a general purpose DP method to describe the mechanical response of two allotropes of titanium (in addition to other defect, thermodynamic and structural properties). The resulting DP correctly captures the structures, energies, elastic constants and γ-lines of Ti in both the HCP and BCC structures, as well as properties such as dislocation core structures, vacancy formation energies, phase transition temperatures, and thermal expansion. The DP thus enables direct atomistic modelling of plastic and fracture behaviour of Ti. The approach to specialising DP interatomic potential, DPspecX, for accurate reproduction of properties of interest “X”, is general and extensible to other systems and properties.


2021 ◽  
Vol 1 (2) ◽  
pp. 159-172
Author(s):  
Wei Yu ◽  
Chaoyue Ji ◽  
Xuhao Wan ◽  
Zhaofu Zhang ◽  
John Robertson ◽  
...  

2021 ◽  
Author(s):  
Shota Ono ◽  
Daigo Kobayashi

Abstract Although many binary compounds have the B2 (CsCl-type) structure in the thermodynamic phase diagram, an origin of the structural stability is not understood well. Here, we focus on 416 compounds in the B2 structure extracted from the Materials Project, and study the dynamical stability of those compounds from first principles. We demonstrate that the B2 phase stability lies in whether the lowest frequency phonon at the M point in the Brillouin zone is endowed with a positive frequency. We show that the interatomic interactions up to the fourth nearest neighbor atoms are necessary for stabilizing such phonon modes, which should determine the minimum cutoff radius for constructing the interatomic potentials of binary compounds with guaranteed accuracy.


2021 ◽  
Author(s):  
Carsten Staacke ◽  
Simon Wengert ◽  
Christian Kunkel ◽  
Gábor Csányi ◽  
Karsten Reuter ◽  
...  

State-of-the-art machine learning (ML) interatomic potentials use local representations of atomic environments to ensure linear scaling and size-extensivity. This implies a neglect of long-range interactions, most prominently related to electrostatics. To overcome this limitation, we herein present a ML framework for predicting charge distributions and their interactions termed kernel Charge Equilibration (kQEq). This model is based on classical charge equilibration models like QEq, expanded with an environment dependent electronegativity. In contrast to previously reported neural network models with a similar concept, kQEq takes advantage of the linearity of both QEq and Kernel Ridge Regression to obtain a closed-form linear algebra expression for training the models. Furthermore, we avoid the ambiguity of charge partitioning schemes by using dipole moments as reference data. As a first application, we show that kQEq can be used to generate accurate and highly data-efficient models for molecular dipole moments.


Sign in / Sign up

Export Citation Format

Share Document